CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

COMBINED SCIENCE

0653/03

Paper 3

October/November 2003

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 16.

For Examiner's Use

3

1

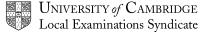
4

5

7

8

9


10

TOTAL

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

This document consists of 15 printed pages and 1 blank page.

1 (a) Fig. 1.1 shows some information about three enzymes which act in the human digestive system.

enzyme	substance which the enzyme digests	substance which is produced	place where the enzyme works
	starch	sugar (maltose)	mouth and small intestine
lipase		fatty acids and glycerol	small intestine
protease	proteins		

Fig. 1.1

Complete the table by writing the appropriate word or words in each of the four spaces.

(b) Seeds and fruits are important sources of nutrients for many animals, including

humans. Many seeds and fruits contain sugar, starch and protein.

(i) Explain how the presence of these nutrients can help the seeds or fruits to be dispersed to new areas.

[2]

(ii) Describe how you would test a seed for the presence of protein, and state what you would see if the test was positive.

- **2** (a) Fig. 2.1 shows an observer's eye looking at a lamp in a mirrror.
 - (i) On Fig. 2.1, draw a ray of light to show how the observer is able to see the lamp in the mirror.

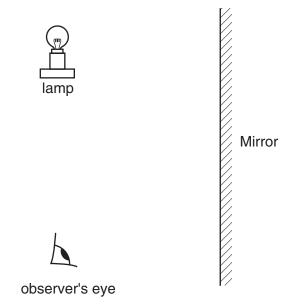


Fig. 2.1

- (ii) On Fig. 2.1 show the position of the image. [2]
- (b) Light waves and radio waves are both parts of the electromagnetic spectrum.
 - (i) State **one** property that is the same for both of these waves.

.....[1]

(ii) State one property that is different for each of these waves.

.....[1]

[3]

3 Fig. 3.1 shows a blast furnace which is used to extract iron from iron ore. Iron ore is a rock containing iron(III) oxide.

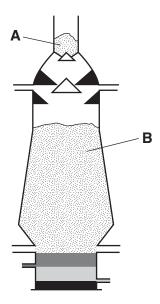


Fig. 3.1

(a) (i) Iron ore and coke are added to the furnace at A. Name the other raw material that

	is added at A .
	[1]
(ii)	Iron(III) oxide is reduced to iron at B .
	Write a word equation for the reaction at B .
	[2]
(iii)	Explain why iron(III) oxide is said to be <i>reduced</i> in this reaction.
	[1]
(b) (i)	The chemical formula of iron(III) oxide is ${\rm Fe_2O_3}$. The formula of the oxide ion is ${\rm O^{2-}}$. Deduce the formula of the iron ion. Show how you obtained your answer.
	[0]
	[2]

(ii)	Calculate the relative formula mass of iron(III) oxide. Show your working.	
	,	
		[0]

4 A student investigated the effect of temperature on the transpiration rate of potted plants.

She took three similar plants growing in pots, and added the same volume of water to the soil in each pot. Then she fastened a transparent polythene bag around each one. For plants **A** and **B**, the bag covered the pot only. For plant **C**, the bag covered the pot and also the plant, as shown in Fig. 4.1.

Plants **A** and **C** were left in a room kept at 20°C. Plant **B** was left in a room kept at 10°C.

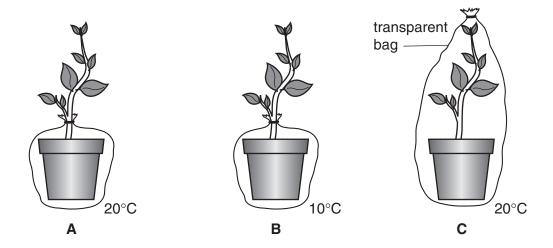


Fig. 4.1

Each plant was placed on a balance and its mass was recorded at the same time each day for one week. The loss of mass was then calculated. The results are shown in Fig. 4.2.

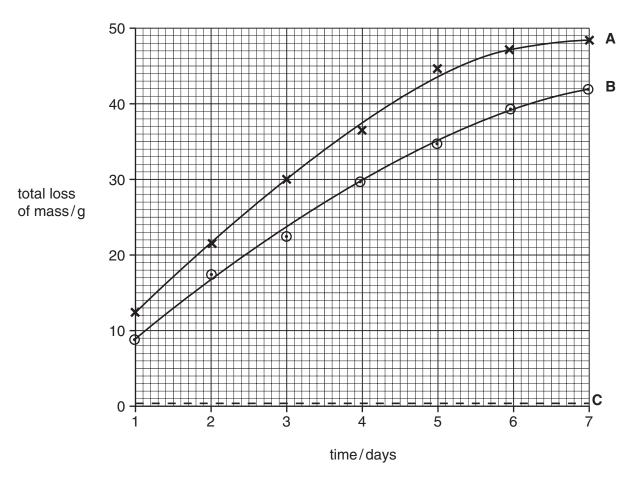


Fig. 4.2

(a)	(i)	Suggest one factor which should have been the same in the two rooms, to make sure that the student's results were valid.
		[1]
	(ii)	Explain why the polythene bags needed to be transparent.
		[2]
(b)	(i)	Explain why plants A and B lost mass, but plant C did not.
	<i>(</i> 11)	[3]
	(ii)	Explain why plant A lost more mass than plant B .
		[3]
	(iii)	The conditions in the two rooms were kept constant throughout the experiment.
	(,	Suggest why plant A lost mass more slowly towards the end of the week.
		[2]

5 Liquid water may freeze into solid ice on a cold night but may evaporate into water vapour on a hot day.

Explain in terms of particles how water can be found as ice, liquid water or water vapour under these different conditions.

You may wish to use diagrams in your answer. Your answer must refer to

- the motion of the particles,
- the separation of the particles,
- the forces between the particles.

[5]

- 6 Most of the compounds in petroleum (crude oil) are hydrocarbons but some sulphur compounds are also present.
 - (a) (i) Write a word equation for the complete combustion of the hydrocarbon, methane.

[2]

(ii) Explain how sulphur compounds may cause damage to the environment if they are not removed from petroleum.

[6].....

(b) Some hydrocarbons are cracked to form smaller molecules such as ethene which

Describe how a hydrocarbon is tested to find out whether it contains a double bond.

.....

(c) Fig. 6.1 shows the displayed formula of a small part of a molecule of poly(ethene).

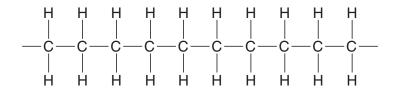


Fig. 6.1

(i) State the number of ethene monomers which have joined to form this section of the poly(ethene) molecule.

_____[1]

(ii) Explain your answer to (i).

contains a double bond.

.....

7 Fig. 7.1 shows two beakers **A** and **B**, both full of water.

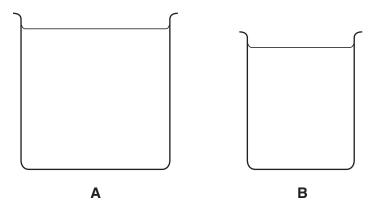


Fig. 7.1

(a) (i) When both beakers are full of water, beaker A has twice the weight of beaker B. What can be said about the masses of the two beakers when they are full of water?

Explain your answer.	
	[2]

(ii) Fig. 7.2 shows the two beakers balanced on a thin beam.

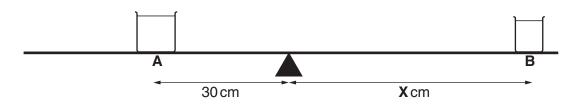


Fig. 7.2

What is the value of X ?	
Explain your answer.	
	ro

(b) Fig. 7.3 shows a conical flask and a drinking glass, both full of water.

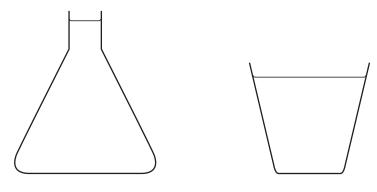


Fig. 7.3

- (i) Label each container with a **C** to show the approximate centre of mass in each one. [2]
- (ii) Explain why it is more difficult to tip over the conical flask than the drinking glass. You may draw diagrams if it helps your answer.

 	 	 	 	 	[

8

		on bulb is cut open, it can be seen to be made of several different layers. Each layer ry thin 'skin' covering its inner surface. This skin is called an <i>epidermal tissue</i> .
		at is the term that is used to describe a structure such as an onion bulb, which is de of several tissues grouped together?
		[1]
(b)	The	outline shows the shape of a plant cell in the epidermal tissue of an onion bulb.
	(i)	In the space below, draw a diagram to show how at least six of these cells are grouped together to form the epidermal tissue.
		[3]
((ii)	State one way in which a cell in onion epidermal tissue differs from a cell in the palisade mesophyll of a leaf. Explain the reason for this difference.
		difference
		reason for this difference
		[3]

9 The pH values of three acidic solutions are shown below.

4

3

vinegar lemon juice

battery acid 1

(a) The formula of the ion present in all acids is H+.

(i) Which of the solutions shown above contains the highest concentration of this ion?

.....[1]

(ii) Write an ionic equation which describes the neutralisation of any acid by any alkali.

.....[2]

(b) When sodium carbonate is added to dilute hydrochloric acid, there is a vigorous reaction in which the acid is neutralised and a gas is given off.

Complete the word equation for this reaction.

[3]

(c) Copper(II) oxide is an insoluble base.

Describe how crystals of copper(II) sulphate could be made from copper(II) oxide and dilute sulphuric acid.

.....

10	Rad	lon is a gas that emits alpha radiation.
	(a)	Explain why alpha radiation is dangerous to human beings.
		[2]
	(b)	Explain why alpha radiation is affected by an electric field.
		[2]
	(c)	Describe the differences in the structure of the nucleus of a radon-220 atom before and after the emission of an alpha particle.
		[2]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

						•					3						
								Gro	Group								
_	=											≡	≥	>	5	=	0
							-										4
							I										Не
							Hydrogen 1										Helium 2
7	6											1	12	14	16	19	20
=	Be											Ω	ပ	Z	0	ш	Ne
Lithium 3	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28		32		40
Na	Mg											Αſ	S	۵	ဟ	70	Αr
Sodium 11	Magnesium 12											Aluminium 13	Silicon 14	Phosphorus 15	Sulphur 16	Chlorine 17	18
68	40	45	48	51	52	55	56	59	59	64		02		75	62	80	84
¥	Ca	သွ	F	>	ప	Mn	Ъе	ဝိ	Z	చె	Zu	Ga		As	Se	ģ	궃
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Ε	Arsenic 33	3 48	Bromine 35	Krypton 36
85	88	68	91	83	96		101	103		108	112		1	122	128	127	131
Вb	Š	>	Zr	Q N	Mo	ည		R	Pd	Ag	ප	In	Sn	Sb	<u>e</u>	Ι	Xe
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	д 94		Cadmium 48	Indium 49		Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186		192			201	204	207				
S	Ва	Ľ	Ξ	Тa	>	Be	SO	ľ	풉	Ρn	Нg	11	Pb		S	Ą	R
Caesium 55	Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78		Mercury 80	26		_	Polonium 84	Astatine 85	Radon 86
	226	227										-					
ŗ	Ва	Ac															
Francium 87	Radium 88	Actinium 89 †															
*58-71	*58-71 Lanthanoid series	learing		140	141			150	152	157	159	162	165	167	169	173	175
+90-103	- 30-7 1 Laminanold sene - 490-103 Actinoid series	pripo		ပိ	Ā		Pm	Sm	En	В	욘	D	운	ш	T E	Λb	<u></u>
20-20-	, 500000	001100		Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Key