

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

COMBINED SCIENCE

0653/23

Paper 2 (Core)

May/June 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 23 printed pages and 1 blank page.

1 (a) Table 1.1 shows the numbers of protons, neutrons and electrons in four atoms, A, B, C and D

Table 1.1

atom	protons	neutrons	electrons	
A 1		0	1	
В	8	8	8	
С	1	1	1	
D	15	16	15	

(i)	Name the central part of an atom that contains protons and neutrons.
	[1]
(ii)	Explain which one of the atoms, ${\bf A}, {\bf B}, {\bf C}$ or ${\bf D},$ has a nucleon number (mass number) of 16.
	atom
	explanation
	[2]
(iii)	Use the information in Table 1.1 to explain why atoms do not have an overall electrical charge.
	[2]

(b) Fig. 1.1 shows containers of hydrogen and helium.

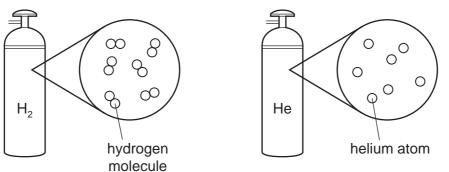


Fig. 1.1

(i)	Hydrogen is usually described as a non-metal.	
	Name the type of chemical bond joining the atoms in a hydrogen molecule.	
		[1]
(ii)	Suggest why helium exists as uncombined atoms.	
		[1]

(c) Hydrogen is often included in the reactivity series of metals.

Use the idea of reactivity to explain the observations shown in Fig. 1.2.

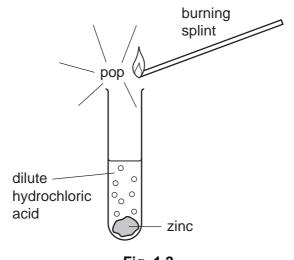


Fig. 1.2

[2]

Use

For Examiner's 2 (a) A fishing boat is floating on the sea.

For Examiner's Use

A fisherman drops a heavy anchor from the boat. The anchor accelerates as it falls through the water.

(i) Name the downward force which makes the anchor accelerate.

 [1]	

(ii) Complete the sentence below to describe the main energy change that happens to the anchor during its fall.

(b) Fig. 2.1 shows a diagram of a water wave.

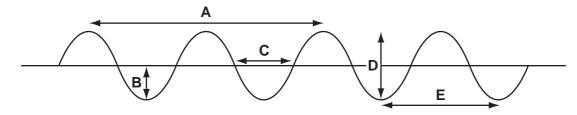


Fig. 2.1

Which measurement A, B, C, D or E is

- (i) the wavelength of the wave? [1]
- (ii) the amplitude of the wave? [1]

(c) Water waves are a renewable energy resource.

For Examiner's Use

Fig. 2.2 shows how water waves can be used to produce electricity.

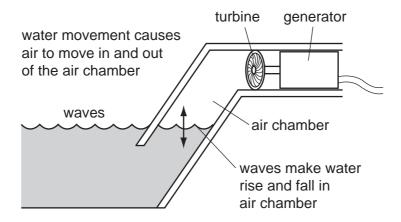


Fig. 2.2

Complete the sentences below to describe how the kinetic energy of the waves is changed into electrical energy.

The kinetic energy of the waves is transferred into the gravitational potential energy of the water.

This causes the air to move and make the) 	spin.	
Electrical energy is produced in the			[2]

3 Fig. 3.1 shows some organisms that live in and around a pond.

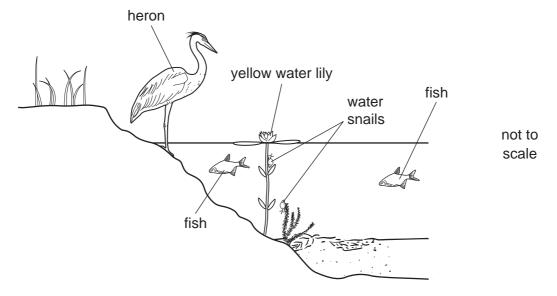


Fig. 3.1

(a) Herons eat fish. Water snails eat water plants, such as yellow water lilies.

Tick **all** the boxes that correctly describe each organism.

	producer	consumer	carnivore	herbivore
heron				
water snail				
yellow water lily				

[3]

- **(b)** The addition of a harmful substance to the environment is called pollution. Two examples of pollution caused by human activities are
 - untreated sewage entering a pond,
 - the release of methane into the atmosphere.

(')	Explain wity uniteated sewage entering a policinary cause list to die.

© UCLES 2013

(ii) Methane is produced by bacteria and other decomposers breaking down organic

waste material in rubbish dumps.
Describe how air pollution by methane can harm the environment.
וסו

4 Petroleum (crude oil) and rock salt occur naturally in the Earth's crust.

For Examiner's Use

- (a) Petroleum is a mixture that contains thousands of different compounds. Many of these compounds are alkanes.
 - (i) Complete the diagram of the alkane molecule that contains two carbon atoms.

[2]

(ii) Fig. 4.1 shows a simple pie chart of the composition of natural gas.

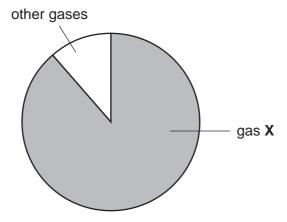
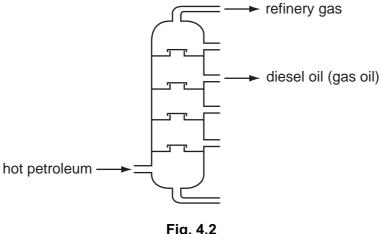


Fig. 4.1


Name gas **X**. [1]

(b) When petroleum is refined, it is separated into fractions.

(c)

Fig. 4.2 shows a simplified diagram of apparatus that is used to refine petroleum.

For Examiner's Use

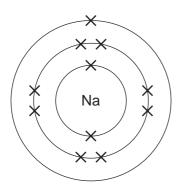


	Fig. 4.2
(i)	State the full name of the process shown in Fig. 4.2.
	[1]
(ii)	Refinery gas and diesel oil are used as fuels.
	Name the two compounds that are formed when alkanes in these fuels undergo complete combustion.
	and [2]
	ck salt contains mainly sodium chloride which is a compound of the alkali metal lium, and the halogen, chlorine.
(i)	Explain why the uncombined elements sodium and chlorine are not found in the Earth's crust.

[1]

(ii) Fig. 4.3 shows diagrams of a sodium atom and a chlorine atom.

For Examiner's Use

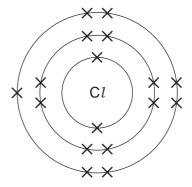


Fig. 4.3

When sodium reacts with chlorine, the atoms shown in Fig. 4.3 first change into electrically charged atoms known as ions.

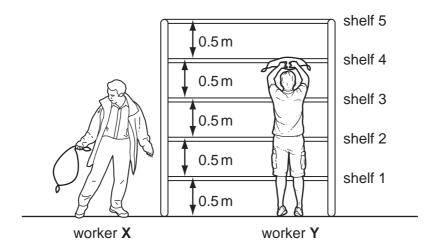
changed	,	паррепъ	wiieii	Socium	atoms	anu	CHIOTHE	atoms	are
									[2]

5 Milk is a liquid produced by cows and other mammals, on which they feed their young.

For Examiner's Use

Table 5.1 shows the mass of some of the substances in 100g samples of milk from two mammals.

Table 5.1


substance	cow's milk	water-buffalo's milk
protein/g	3.2	4.5
fat/g	3.9	8.0
carbohydrate/g	4.8	4.9
calcium/mg	120	195

		calcium/mg	120	195	
(a)	Which quantit		able 5.1 is present in th	ne samples of milk in the	smallest
					[1]
(b)		st which substance, no gest quantity.	t shown in Table 5.1, is	s present in the samples	of milk in
					[1]
(c)		n why both cow's milk with biuret solution.	and water-buffalo's m	nilk produce a violet colo	our when
					[1]
(d)	Predic	t the colour you would s	ee if you added iodine	solution to cow's milk.	
	Explair	n your answer.			
	colour				
	explan	ation			[2]
(e)	List the	e components of milk, s	hown in Table 5.1, that	provide energy.	
					[1]
(f)		n one way in which dri than drinking cow's mill		nilk might be better for a	person's
					[2]

6 (a) In a store, two workers are lifting 5 kg bags of flour onto the shelves. There are five shelves, 0.5 m apart. The lowest shelf is 0.5 m from the floor.

For Examiner's Use

Fig. 6.1 shows the two workers.

	Fig. 6.1	
(i)	Worker X lifts a bag of flour onto shelf 2. Worker Y lifts a bag of flour onto shelf 4	
	Which worker has done more work?	
	Explain your answer.	
	workerbecause	
		[1]
(ii)	State the unit in which work and energy are measured.	[1]
(iii)	State the mass of each 5 kg bag of flour in grams.	[1]
(iv)	Each 5 kg bag of flour has a volume of 5500 cm ³ .	
	Calculate the average density of the bag of flour. State your answer in g/cm ³ .	
	State the formula that you use and show your working.	
	formula	
	working	
	g	

© UCLES 2013

[2]

g/cm³

(b) Three boys, **A**, **B** and **C**, walk together from their school to a store. They stay at the store for a few minutes and then return to school.

For Examiner's Use

When they leave the store,

- one boy walks back to school at a steady pace,
- one boy walks back to school at a slower steady pace,
- one boy slows down gradually as he walks back to school.

The graph in Fig. 6.2 shows how their speeds vary with time during the whole journey to the store and back again.

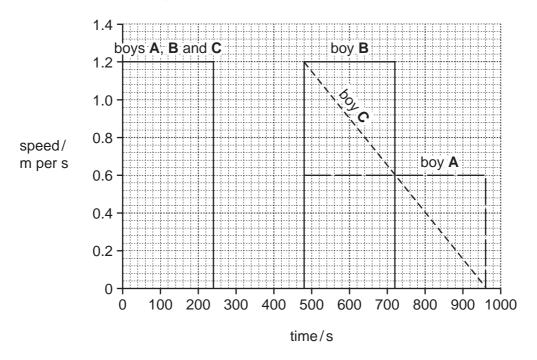


Fig. 6.2

(i) Calculate the distance of the store from the school.Show your working.

 m	[2]

(ii) For how many seconds do the boys stay in the store?

s	[1]

(iii) Which boy slowed down on his way back to school?

State a reason for your answer.

	because	boy
[0]		

(a) Sodium hydrogencarbonate, NaHCO₃, is a white solid compound. 7 State the number of different elements that are shown combined in the formula, NaHCO₃. (b) Fig. 7.1 shows apparatus a student used to investigate the reaction between sodium hydrogencarbonate and dilute hydrochloric acid. side-arm test-tube dilute hydrochloric acid 000 full range indicator solution (Universal Indicator) sodium hydrogencarbonate Fig. 7.1 The student observed that the indicator changed colour from green to orange. Explain this observation.

(c) The student investigated the temperature change when sodium hydrogencarbonate was added to excess dilute hydrochloric acid.

For Examiner's Use

Fig. 7.2 shows the apparatus she used.

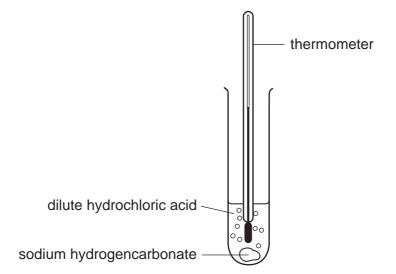


Fig. 7.2

Table 7.1 shows the temperature measurements the student made.

Table 7.1

temperature of the acid before the reaction/°C	19.0
temperature of the reaction mixture after reaction/°C	12.0

	(i)	Calculate the temperature change that occurred during the reaction.		
		°C	[2]	
	(ii) State the term that is used to describe chemical reactions that cause this type temperature change.			
			[1]	
(d)		oluble calcium compound can be made by reacting lemon juice with finely powder shells, which are made mainly of calcium carbonate.	ed	
	Len	non juice contains a relatively low concentration of acid.		
	Sta	te the effect on the rate of reaction of		
		using a relatively low acid concentration,		
		using egg shells in the form of a fine powder.		
			[2]	

8 Fig. 8.1 shows the human gas exchange system.

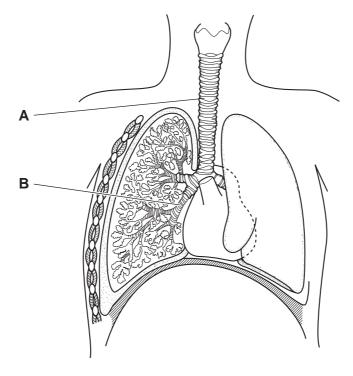


Fig. 8.1

1	a	١	Name	structures	Δ	and	R
ı	a	,	INAIIIE	Suuciuies	\boldsymbol{H}	anu	D

Α	
_	
О	[0]

(b) Table 8.1 shows the differences in the composition of inspired and expired air.

Table 8.1

gas	percentage in inspired air	percentage in expired air
nitrogen	78	
oxygen	21	17
carbon dioxide	0.04	4
noble gases	1	

(i)	Complete Table 8.1.	[1]

(ii) Name one noble gas that is present in air.

[1]

(iii)	Explain why the air that we breathe out (expired air) contains less oxygen and more carbon dioxide than the air we breathe in.	Fo Exami Us
	[2]	
(iv)	Describe how you could show that expired air contains more carbon dioxide than inspired air. You can use a diagram if it helps your answer.	
	[3]	

iner's

(c) An athlete exercised on a treadmill. The treadmill measured her power output, in watts. The faster she ran, the greater her power output.

i)	Explain why the athlete's power output was greater when she ran faster.
	[2]

(ii) The athlete was connected to a machine that measured the rate and depth of her breathing.

For Examiner's Use

Fig. 8.2 shows how her depth of breathing changed when she ran with different power outputs.

volume of air breathed in with each breath/dm³

1

0

0

50

100

150

200

250

power output when running/W

Fig. 8.2

	Describe greater po			depth	of	breathing	changed	when	she	ran	with	а
		 	•••••		•••••							•••
	,	 			••••		••••••					•••
		 									[2	2]
(iii)	State one greater po	-		ch her	bre	athing wo	uld chang	e wher	n she	ran	with	а
		 									[1]

(a) Complete the following sentences choosing from the terms below. Each term may be used once, more than once or not at all. parallel current potential difference resistance series watt A flow of electric charge is called a An ammeter is used to measure [2]

For Examiner's Use

9

(b) A student investigated how a change in potential difference across a lamp affected the current flowing through the lamp.

For Examiner's Use

She used wires to connect the components shown in Fig. 9.1 to make a circuit.

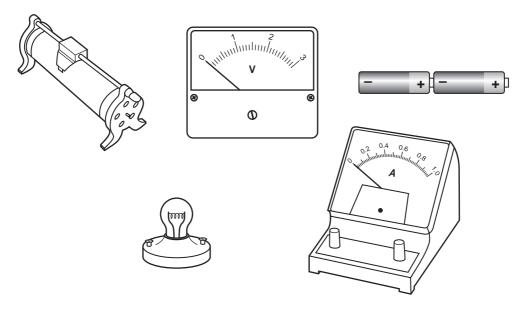


Fig. 9.1

Using the correct circuit symbols, draw a diagram to show the circuit she used.

[4]

(c) Electricity is often transmitted through overhead power cables hung from pylons. If these cables are put up on a hot summer day, they are hung loosely from the pylons as shown in Fig. 9.2.

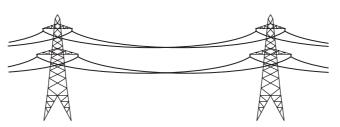


Fig. 9.2

Suggest why the cables are hung loosely.	
	[2]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 1	Helium 2	CC	₽	o do	10	40	Ā	Argon 18	84	궃	Krypton 36	131	Xe	Xenon 54		Ru	Radon 86				175	Ľ	Lutetium 71		۲	Lawrencium 103
	II/			10	₽ Ц	Fluorine	6	35.5	C1	Chlorine 17	80	ģ	Bromine 35	127	_	lodine 53		Ą	Astatine 85				173	Υb	Ytterbium 70		2	Nobelium 102
	IN			á	² C	Oxygen	8	32	တ		62	Se	Selenium 34	128	<u>e</u>	Tellurium 52		Ъо	Polonium 84				169	E			Md	Mendelevium 101
	>			7	· Z	Nitropen	7	31	۵	Phosphorus 15	75	As		122	Sb	Antimony 51	209	ä	Bismuth 83				167	ш	Erbium 68		Fm	Fermium 100
	<u>\</u>			10	۲ ر	Carbon	9	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn			Pb	Lead 82				165	운	Holmium 67		Es	Einsteinium 99
	III			-	<u> </u>	Boron (5	27	ΝI	Aluminium 13	70	Ga	Gallium 31	115	u –	Indium 49	204	11	Thallium 81				162	۵	Dysprosium 66		ర	Californium 98
											65	Zn	Zinc 30	112	ဦ	Cadmium 48	201	Нg	Mercury 80				159	Тр	Terbium 65		æ	Berkelium 97
											64	చె	Copper 29	108	Ag		197	Αn	Gold 79				157	Gd	Gadolinium 64		Cm	Curium 96
Group											29	Z	Nickel 28	106	Pd	Palladium 46	195	₹	Platinum 78				152	En	Europium 63		Am	Americium 95
פֿ											59	ပိ	Cobalt 27	103	R	Rhodium 45	192	_	Iridium 77				150	Sm	Samarium 62		Pu	Plutonium 94
		- 1	Hydrogen 1								56	Ь	Iron 26	101	Ru	Ruthenium 44	190	Os	Osmium 76					Pm	- 79		Q N	Neptunium 93
											55	Mn	Manganese 25		ည	Technetium 43	186	Re	Rhenium 75				144	Š	Neodymium 60	238	_	Uranium 92
											52	ပ်	Chromium 24	96	Mo	Molybdenum 42	184	≥	Tungsten 74				141	Ą	Praseodymium 59		Ра	Protactinium 91
											51	>	Vanadium 23	93	Q Q	Niobium 41	181	⊐	Tantalum 73				140	ပီ	Cerium 58	232	드	Thorium 90
											48	F	Titanium 22	91	Z	Zirconium 40	178	Ξ	Hafnium 72							nic mass	loqi	nic) number
											45	လွ	Scandium 21	88	>	Yttrium 39	139	Гa	Lanthanum 57 *	227	Ac	Actinium †	oprion	orion	0	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=			o	. G	Beryllium	4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Š	Strontium 38	137	Ва	Barium 56	226	Ка	Radium 88	*F8_71 potbassiss	Actinoid o	30-103 Aciliola selles	a	×	α —
	_			7	· =	i iii	8	23	Na	Sodium 11	39	×	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55		Ì	Francium 87	*58_71	100 1 L	501-06		Key	٥

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).