

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME										
CENTRE NUMBER						CANE NUME	E			

COMBINED SCIENCE

0653/32

Paper 3 (Extended)

May/June 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of 23 printed pages and 1 blank page.

1 Guanacos are relatives of camels and live in the Andes mountains in South America. They feed on grasses and other plants. They are killed and eaten by pumas.

For Examiner's Use

Fig. 1.1 shows a guanaco.

Fig. 1.1

- (a) Give the correct ecological term for each of the following.
 - (i) all the guanacos that live in a particular area

[1]

(ii) all the species of animals and plants that live in a particular area

[1]

(iii) an organism, such as a guanaco or a puma, that feeds on other organisms

[1]

(b)		anacos can live at very high altitudes, above 4000 metres. The atmosphere is less se than at sea level, and it can become very cold.
	(i)	The blood of a guanaco contains four times as many red blood cells per cm³ as the blood of a human. This helps the guanaco to survive in its environment.
		Suggest an explanation for this.
		ro1
		[2]
	(ii)	Explain how the hair of a guanaco can help it to survive in its environment.
		[2]
(c)		anacos are an endangered species. Their numbers have fallen because of damage neir natural habitat, caused by humans.
	(i)	Suggest two types of human activity that may damage the natural habitat of guanacos.
		1
		2
	(ii)	Several countries in South America have conservation programmes to try to increase the numbers of guanacos.
		Suggest why it is important to conserve guanacos.
		[2]

[Turn over

2 (a) A man has dropped a torch (flashlight) down a drain. The torch has disappeared into the horizontal part of the drain as shown in Fig. 2.1.

For Examiner's Use

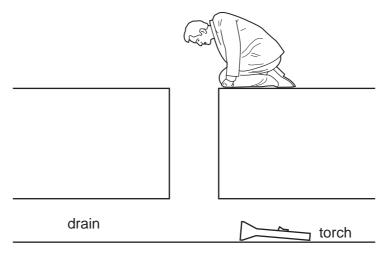


Fig. 2.1

The torch is still switched on but the man cannot see it.

The man lowers a mirror down the drain in order to find his torch.

(i) On Fig. 2.1 draw a mirror at the correct place and angle so that the man can see light from the torch.

Use this symbol for the mirror.

[1]

(ii) On Fig. 2.1 draw a ray of light from the torch to the man.

[1]

- **(b)** The diagrams below show the symbols for three parts of the electrical circuit in the torch.
 - (i) On the line below each diagram state the name of the part.

[1]

5 (ii) Draw a circuit diagram to show how these three parts are connected in the torch. [1] (c) Fig. 2.2 shows a torch standing on a table. M shows the position of the centre of mass of the torch. table Fig. 2.2 Explain why the torch is more stable if it stands on end A rather than on end B. You may use diagrams to help your answer.

3

Examiner's Use

(a) Fig. 3.1 shows how pieces of lithium metal are stored.

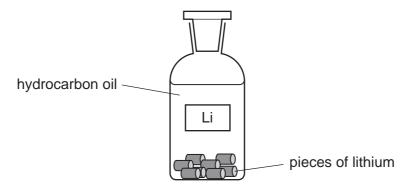


Fig. 3.1

[2]	21
State and explain why it is necessary to store lithium in this way.	

- **(b)** The production of lithium metal involves three main stages.
 - 1 Lithium compounds found in the Earth's crust are first converted into lithium carbonate, Li₂CO₃.
 - 2 Lithium carbonate is then converted into lithium chloride, LiCl.
 - 3 Lithium chloride and potassium chloride are melted together and the molten mixture is electrolysed.

Fig. 3.2 shows the apparatus and materials which could be used to produce a **neutral** solution of lithium chloride from lithium carbonate and dilute hydrochloric acid.

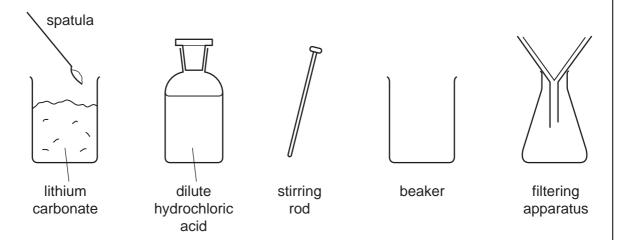


Fig. 3.2

	(i)	Describe how this apparatus should be used to produce a neutral solution of lithium chloride.	For Examiner's Use
		[3]	
	(ii)	Suggest the word equation for the reaction between lithium carbonate and dilute hydrochloric acid.	
		[1]	
(c)		. 3.3 shows a simplified diagram of the electrolysis of a molten electrolyte containing um chloride.	
		molten electrolyte containing lithium chloride	
	/i)		
	(i)	Explain why the process of electrolysis would not work if the electrolyte was allowed to solidify.	
		[2]	

(ii)	Describe how the electron configuration of each lithium ion changes when it arrives at the cathode.	For Examiner's Use
	You may draw a diagram to help you answer this question.	
	[1]	

© UCLES 2011 0653/32/M/J/11

4 Fig. 4.1 shows a smoke detector that uses the isotope americium-241, which emits alpha radiation.

For Examiner's Use

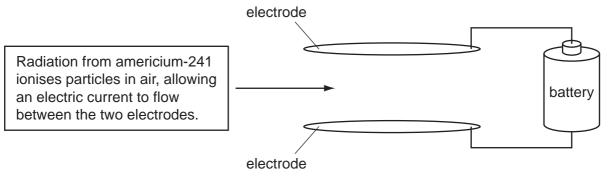


Fig. 4.1

Smoke particles stop radiation from reaching the air particles. This causes the current to stop flowing, causing the alarm to sound.

(a)	Explain why detector.	beta o	r gamma	radiation	sources	would	not b	e suitable	for this	smoke
										[2]

(b) Fig. 4.2 is a graph to show how the number of americium-241 atoms inside a source decreases over time.

For Examiner's Use

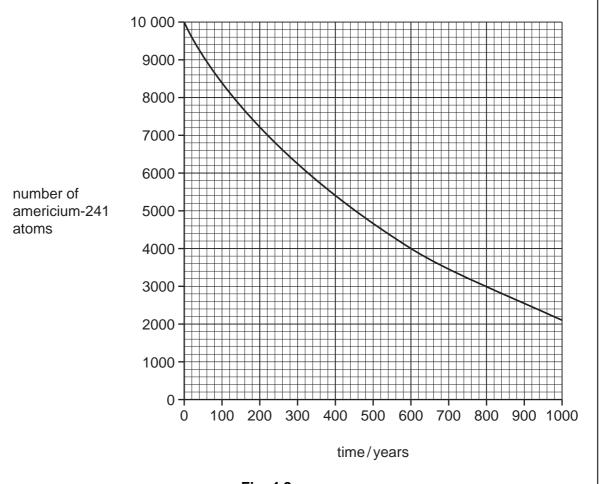
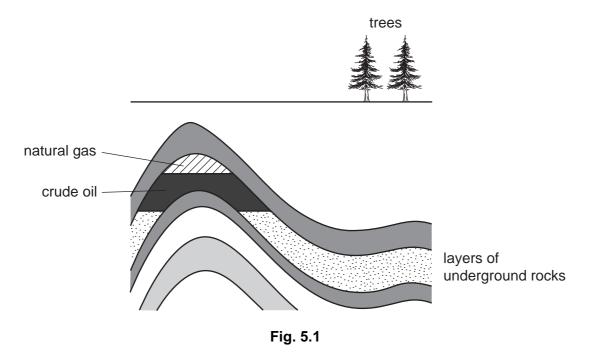


Fig. 4.2

(i) Calculate the half-life of the americium-241.Show your working.


(ii)	The battery inside the smoke detector has to be replaced each year.	
	Explain why the americium-241 source will never have to be replaced.	

[2]

[1]

5 Fig. 5.1 shows crude oil and natural gas trapped in underground rocks. The diagram is not drawn to scale.

For Examiner's Use

(a) Wood obtained from trees and compounds obtained from crude oil and natural gas can be used as fuels.

State **two** reasons why crude oil and natural gas are examples of *fossil fuels* but wood is not.

1	
•••	
2	
	[2]

(b) Hexane, C₆H₁₄, is a hydrocarbon which is found in gasoline (car fuel).

Show that the relative formula mass of hexane is 86.

[1]

(c) Fig. 5.2 shows the balanced equation for the complete combustion of methane. The reactants and products are shown using displayed (graphical) chemical formulae.

For Examiner's Use

Fig. 5.2

During the reaction, chemical bonds are both broken and formed.

- (i) On the equation in Fig. 5.2 draw a cross (X) on **one** of the **single** covalent bonds which is broken. [1]
- (ii) When bonds are broken, energy is absorbed. When bonds are formed, energy is released to the surroundings.

Explain, in terms of the breaking and formation of chemical bonds, why some chemical reactions are exothermic.

[2

(d) In a car engine, the combustion of hydrocarbons produces a mixture of waste (exhaust) gases which are released into the atmosphere.

Table 5.1 shows information about some of the gases in a car's exhaust.

Table 5.1

substance in exhaust gases	% by volume
nitrogen	67
carbon dioxide	12
water vapour	11
carbon monoxide	0.2

(i)	Explain why the mixture of exhaust gases contains carbon monoxide.	
		 [1]
(ii)	Suggest why the exhaust gas mixture contains a significant amount of nitrogen.	
		[2]

6 The human body contains organs made up of many different types of cells and tissues.

For
Examiner's
1150

(a) Write each of these structures in the correct column in the table.

eye	heart	sperm	stomach
cell	tissue		organ

[2]

(b)	The internal environment of the human body is kept at a constant temperature of about 37 $^{\circ}\text{C}.$
	Explain why cells work best at this temperature.
	[2]

(c) Bone tissue is made up of cells surrounded by the mineral calcium phosphate.

For Examiner's Use

A study was carried out in Brazil into the mineral content of the leg bones of school children between the ages of 10 and 19 years. The mineral content was measured as the mass of mineral per cm³ of bone. Some of the results are shown in Fig. 6.1.

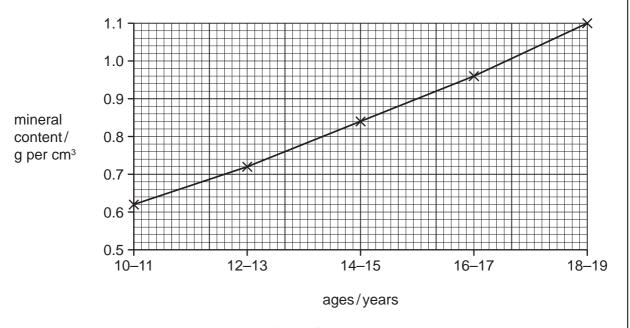


Fig. 6.1

(i) Describe how the mineral content of bone changes between the ages of 10 and 19 years.
[2]
ii) Use the information in Fig. 6.1 to explain why a teenager should have a diet containing plenty of dairy products such as milk and cheese.
[2]
ii) Bone also contains a protein called collagen. Vitamin C is required to make collagen.
Name one food that contains large amounts of vitamin C.
[1]

7 A man wearing a parachute jumps from an aeroplane.

For Examiner's Use

There is an upward force and a downward force acting on the man as he begins to fall before using his parachute.

The man then opens his parachute.

۱۵۱	/i\	Name the force w	hich romaine	the came who	n hic narachu	ita ananc
(a)	(1)	Name the force w	HICH F C HIAIHS	tile same wile	iii iiis paraciiu	ite opens

[1]

(ii)	Explain in	terms	of	forces	why	the	man's	speed	of	fall	decreases	when	the
	parachute of	opens.											

.....

[3]

(b) Fig. 7.1 shows the speed-time graph of his fall.

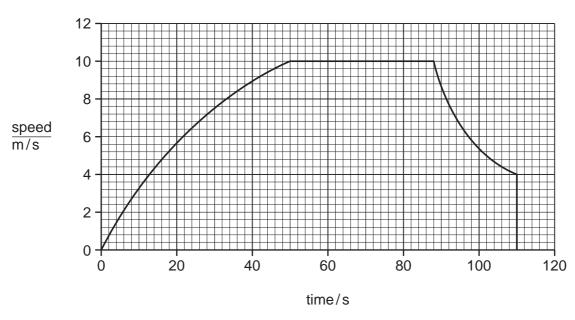


Fig. 7.1

(i) Mark on the graph with the letter **Z** the point at which the parachute opened. [1]

(ii) Mark on the graph with the letter **S** a point where the man is travelling at constant speed. [1]

(iii)	Use Fig. 7.1 to 80 seconds.	calculate	the	distance	travelled	by	the	man	between	60	and
	Show your worki	ng.									
											[2]

8 A student investigated the reactivity of four metals, calcium, copper, magnesium and an unknown metal **A**, by comparing the rate at which these metals reacted in water.

For Examiner's Use

Fig. 8.1 shows what the student observed during the experiment.

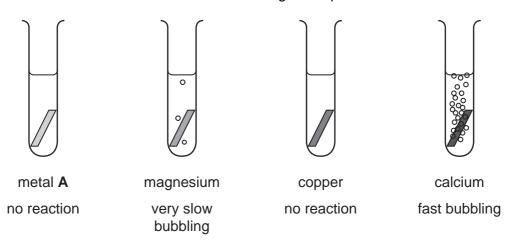


Fig. 8.1


(a)	(i)	State and explain one variable which the student must keep the same if her assessment of the relative reactivity of the four metals is to be reliable.
		variable
		explanation
		[3]
	(ii)	The student found that the pH of the mixture produced when calcium reacted was 12.
		State the name or formula of the ion whose concentration has increased and which is responsible for the change in pH.
		Explain your answer briefly.
		ion
		explanation
		[2]

(iii)	The student then carried out a second experiment to compare the reactivity of unknown metal A with that of copper.
	For her experiment she used a piece of metal A and a solution of the salt, copper nitrate, contained in a beaker.
	Outline how the student could use these materials to find out which metal, ${\bf A}$ or copper, is the more reactive.

For Examiner's Use

(b) If a lighted wooden splint is held in the mouth of the test-tube in which calcium is reacting with water, the hydrogen given off burns with a small explosive pop.

The explosive pop is caused by the rapid oxidation of hydrogen gas, H₂.

Suggest the balanced symbolic equation for the oxidation of hydrogen.

[2]

(a)	Naı	me the part of a flower th	at carries out each of the fol	lowing functions.	
	(i)	attracts insects to the flo	ower		[1]
	(ii)	makes pollen			[1]
(b)		mplete the table to descri I wind-pollinated flowers.	be the differences between	the stigmas of insect-pollina	ted
		feature	insect-pollinated flower	wind-pollinated flower	
		shape of stigma			
		position of stigma			
					[2]
(c)		e cells in the petals o otosynthesise.	f most flowers do not co	ontain chlorophyll and can	not
	(i)	Describe how the cells i	n flowers obtain sugars and	other nutrients.	
					•••••
					[2]
	(ii)	Suggest one reason wh	y the cells in flowers need s	ugars.	
					[1]

For Examiner's Use

9

10 (a) Fig. 10.1 shows a room heated by a convector heater, placed in the middle of the floor.

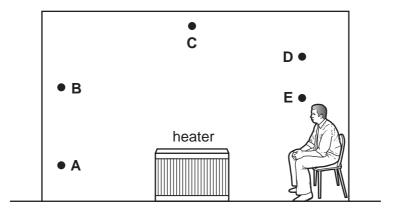


Fig. 10.1

- (i) On Fig. 10.1 draw the convection currents of air produced by the heater. Use arrows to show their direction. [1]

(b) Fig. 10.2 shows the structure of the walls of a house in a cold climate. Heat can escape through the walls of the house.

For Examiner's Use

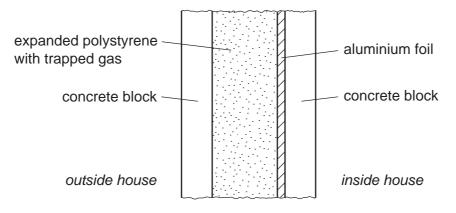


Fig. 10.2

Explain how the structure of the wall in Fig. 10.2 reduces heat loss.
[3

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Ne Neon	40 Ar Argon	8 Ž	Krypton 36	131	×	54	ı	Radon	00			175	Lutetium 71		۲	Lawrencium 103
	IIA		19 F Fluorine	35.5 C1 Chlorine	® Ğ	Bromine 35	127	—	53		At Astatine	2			173 Yh	Ytterbium 70			Nobelium 102
	 		16 Oxygen 8	32 Sulfur 16	% Se	Selenium 34	128	–		1	Polonium				169 Tm	_			Mendelevium 101
	>		14 Nitrogen	31 Phosphorus		Arsenic 33	122	Sp	51	209					167 Fr				Fermium 100
	2		12 C Carbon 6	28 Si Silicon		Germanium 32	119	Sn Pi		207					165				Einsteinium 99
	=		11 Boron 5	27 A1 Aluminium 13		Gallium 31	115	In	49	204	Thallium Thallium	5			162	Ę			Californium 98
		'			92 Zn	Zinc 30	112	Sq	48	201	Hg Mercury	80			159 Th	_			Berkelium 97
					Cu	Copper 29	108	Ag		197	Au Gold	8			157 Gd	Gadolinium 64			Curium 96
dno					⁶⁹ Z	Nickel 28	106	Pd	46	195	Platinum	0			152 F.I	Europium 63		Am	Americium 95
Group					ු පු	Cobalt 27	103	Rh Bedin	45	192	Iridium				150 S.	Samarium 62		Pu	Plutonium 94
		1 Hydrogen			₂₆	Iron 26	101	Ru	44	190	Osmium Osmium	2			Pm	₇ 6		ď	Neptunium 93
					Mn S5	Manganese 25		المهمور	43	186	Rhenium	2			44L	Neodymium 60	238	D	Uranium 92
					డ స	Chromium 24	96	Mokydonim	42	184	Tungsten	t			141 D	72		Ра	Protactinium 91
					5 >	Vanadium 23	93	Q	41	181	Tantalum	2			ا ⁴⁰	Cerium 58	232	Т	Thorium 90
					84 F	Titanium 22	91	Zironiim	40	178	- 6	7,					nic mass	lod	iic) number
					S C	Scandium 21	68	>	39	139	Lanthanum	227	Ac	Actinium 89	series	series	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=		9 Be Beryllium	24 Mg Magnesium	o o	Calcium 20	88	S	38	137	Barium	226	Ra	Radium 88	*58-71 Lanthanoid series	190-103 Actinoid series	a	× ×	Φ
	_		7 Li Lithium	Na Sodium	® ×	Potassium 19	85	Rb d	37	133	Caesium	6	ъ́	Francium 87	*58-71 L	190-103		Key	۵

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).