

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

2591061649

COMBINED SCIENCE

0653/32

Paper 3 (Extended)

May/June 2010

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

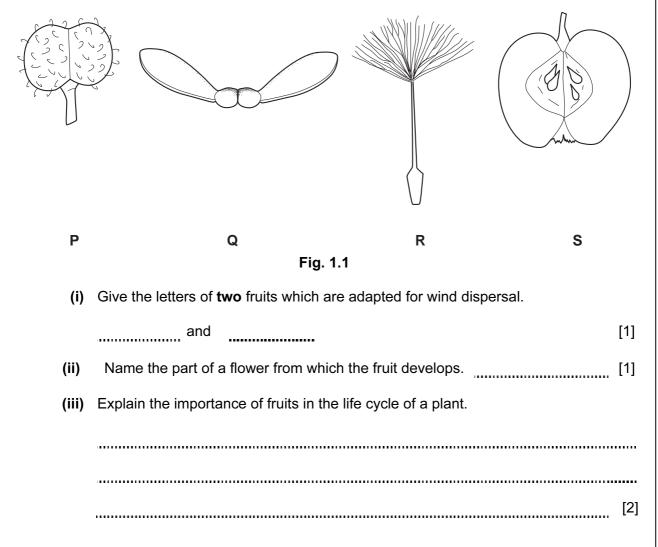
Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 20 printed pages.

1 (a) Fig. 1.1 shows four fruits.

(b) Cacao trees produce many pink and white flowers from which the fruits develop. The seeds inside the pods (fruits) are used to make chocolate.

Wild cacao trees grow in rainforests in warm, humid climates. Most kinds of trees cultivated by humans, such as rubber trees or oil palms, grow best on cleared land, but cacao trees grow best underneath other rainforest trees. Most cacao trees are grown without the use of fertilisers or pesticides.

(i)	Suggest how	the fl	owers o	f the	cacao	tree	are	pollinated,	giving a	a reason	for	your
	answer.											

why cultivating cacao trees may cause less damage to rainforests than ng other trees.	(ii)
[3]	

2 (a) A teacher placed a small piece of potassium into a container filled with chlorine gas.

For Examiner's Use

Fig. 2.1 shows what the class observed.

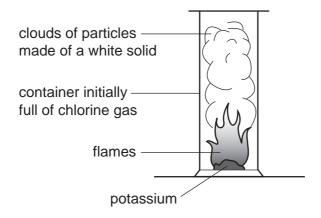


Fig. 2.1

(i) Suggest the name of the white solid formed when potassium and chlorine react.

[1]

(ii) Fig. 2.2 shows a potassium atom and a chlorine atom.

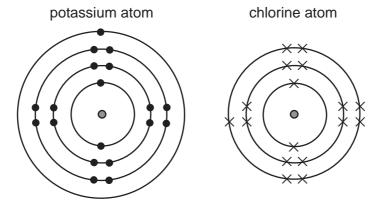


Fig. 2.2

		Describe and explain, in terms of electronic structures, what happens when potassium and chlorine atoms react with each other. You may draw diagrams in the space below if it helps you to answer the question.
		[4]
(b)		tallic potassium can be produced by electrolysis of molten potassium chloride. In process, potassium forms at the cathode.
	(i)	Explain why potassium ions travel to the cathode and not the anode during electrolysis.
		[1]
	(ii)	Describe, in terms of electrons, what happens when potassium ions collide with the surface of the cathode.
		[2]

3 (a) Fig. 3.1 shows an astronaut on a space walk. His space suit is designed to stop dangerous electromagnetic radiation from the Sun reaching the astronaut's body.

Fig. 3.1

	(i)	Name two types of electromagnetic radiation that can harm the body.	
		1 2	[1]
	(ii)	State one way in which electromagnetic radiation can harm the body.	
			[1]
	(iii)	All electromagnetic waves travel at the same speed. What is the value of the speed?	his
			[1]
(b)		e astronaut has a mass of 96 kg. The gravitational field strength on the Moon out one sixth of that on the Earth.	is
	Sta	te the difference, if any, between	
	(i)	the mass of the astronaut on the Earth and on the Moon,	
			[1]
	(ii)	the weight of the astronaut on the Earth and on the Moon.	
			[4]

(c) The astronaut stands on the surface of the Moon and drops a ball. The graph in Fig. 3.2 shows the speed of the ball over a period of 1.6 seconds.

For Examiner's Use

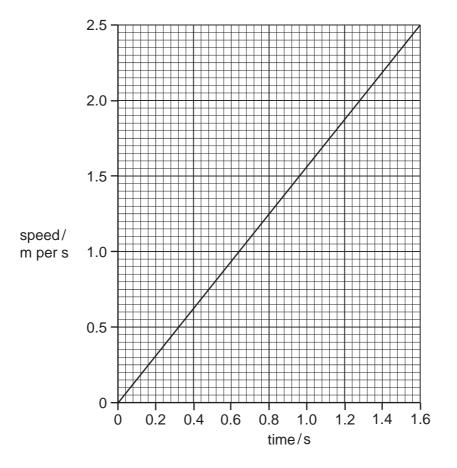


Fig. 3.2

- (i) On the same graph, sketch a line to show the speed of the same ball if it was dropped on Earth. [1]
- (ii) Explain your answer to (c)(i).

[1]

(d)	A ro	ock on the Moon weighs 6 N. The astronaut lifts it up by 2 metres.		For Examiner's
	(i)	Calculate the work done on the rock.		Use
		State the formula that you use and show your working.		
		formula		
		working		
		9		
			[2]	
	(ii)	If the rock was lifted in 2 seconds, calculate the power used.		
		State the formula that you use and show your working.		
		formula		
		working		
			[2]	

4 Fig. 4.1 shows a section through a human heart, seen from the front.

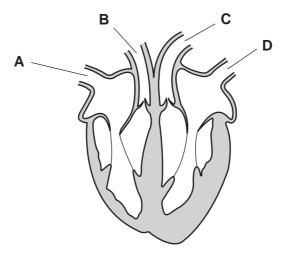


Fig. 4.1

(a)	(i)	Name the type of tissue found in the walls of the heart, as shown in the shaded parts in Fig. 4.1.
		[1]
	(ii)	Describe how this tissue is supplied with oxygen.
		[2]
	(iii)	Give the letters of the two labelled blood vessels that contain oxygenated blood.
		and[1]
(b)		nts also have transport systems in which liquids flow through vessels. However, y do not have a pump like the heart.
	(i)	Explain what makes water flow up through the xylem vessels in a plant.
		[2]
	(ii)	Describe how sugars, made in a plant's leaves, are transported to its roots.
		[2]

10 (a) Some fuels are listed below. 5 animal dung coal wood State **one** reason why coal is an example of a fossil fuel whereas the other two are not. (b) Fig. 5.1 shows a simplified diagram of fractional distillation and catalytic cracking which are both carried out at an oil refinery. Compounds leaving the fractional distillation column at **M** move into the catalytic cracker. catalytic fractional cracker distillation column strong heat Fig. 5.1 (i) Name the raw material which enters at L. (ii) Describe briefly two ways, other than colour and odour, in which the mixture of compounds at **M** differs from the mixture of compounds at **L**.

[2]

.....

(iii) Describe briefly two ways in which the mixture of compounds at N differs from the

For Examiner's Use

mixture of compounds at M.

(iv)	Some of the compounds in the mixture at ${\bf N}$ can be used in addition polymerisation.
	Explain why addition polymers can be made from molecules in the mixture at ${\bf N}$ but not from molecules in the mixture at ${\bf M}$.
	You may draw a diagram if it helps you to answer this question.
	[2]
(c) As	tudent investigated the combustion products of the liquid fuel ethanol.
He	observed that a gas and a colourless liquid were produced.
(i)	The student applied a chemical test to the colourless liquid and found that it was water.
	Describe a suitable chemical test for water and its result.
	[2]
(ii)	Complete the equation below for the combustion of ethanol.
. ,	C_2H_6O + \longrightarrow $2CO_2$ + $3H_2O$ [2]

6 Fig. 6.1 shows a cube.

For Examiner's Use

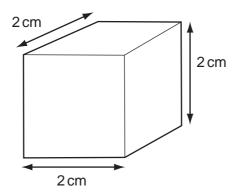


Fig. 6.1

(a) The mass of the cube is 21.6 g.

Calculate the density of the cube.

State the formula that you use and show your working.

formula

working

[3]

(b) The solid cube is made up of very small particles. Fig. 6.2 shows their arrangement.

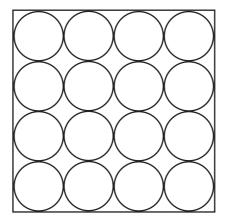


Fig. 6.2

	(i) Complete the diagrams b and in a gas.	pelow to show the arrangement of particles in a liquid	
	liquid	gas	[2]
			[2]
	(ii) Explain your answer to (b	o)(i) in terms of forces between particles.	
			[2]
(c)	Explain, in terms of particles,	why a solid expands when heated.	
			[1]
(d)	Describe one problem caused	d by a solid metal expanding when it gets hot.	
			[2]

7 (a) A student peeled a layer of cells from the inside of an onion bulb. He placed them in a drop of water on a microscope slide and covered them with a coverslip.

For Examiner's Use

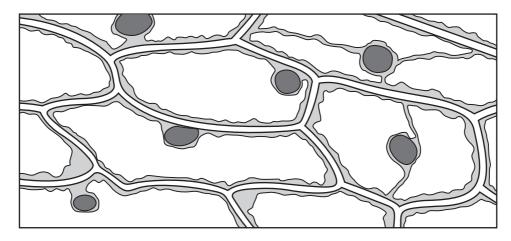


Fig. 7.1

(i) The cells in Fig. 7.1 are similar to each other	∋r.
---	-----

Give the name for a group of similar cells.

Γ-	1
- 1	
 -	-

(ii) State **two** ways in which the cells in Fig. 7.1 differ from animal cells.

1	
2	(2)

(b) The student replaced the water on the slide with a drop of concentrated sugar solution. He waited for five minutes and then looked at the cells through the microscope again.

Fig. 7.2 shows what he saw.

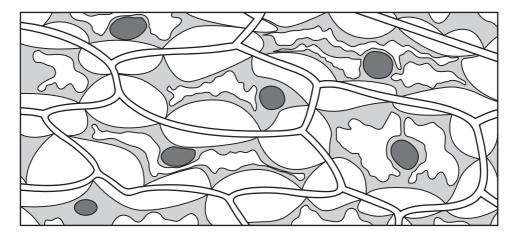


Fig. 7.2

	(i)	On Fig. 7.2, label a partially permeable membrane.					
	(ii)	Using your knowledge of osmosis, explain what has happened to the cells in Fig. 7.2.					
		[3]					
(c)		on cells often contain stores of starch. When a person eats an onion, the starch is ested.					
	Des	scribe how starch is digested in the human alimentary canal.					
	•••••						
		[3]					

8 (a) A student used the apparatus in Fig. 8.1 to investigate the rate of a reaction.

For Examiner's Use

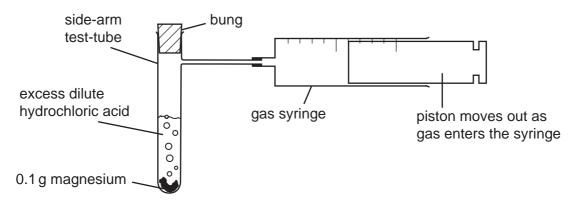


Fig. 8.1

The student dropped the magnesium into the acid contained in the side-arm test-tube and put in the bung. A stopwatch was used to time how long it took for 50 cm³ of gas to collect in the syringe.


The student carried out four experiments **A**, **B**, **C** and **D**, and the results are shown in Table 8.1.

Table 8.1

experiment	time for 50 cm ³ of gas to collect in the gas syringe/seconds
Α	36
В	18
С	144
D	72

(i)	Explain how the results show that experiment B had a higher rate of reaction than experiment A .				
	[41]				
	[1]				
(ii)	(ii) The only variable (factor) which was different between the four experiments A , I C and D was the concentration of the dilute hydrochloric acid.				
Using the letters ${\bf A}, {\bf B}, {\bf C}$ and ${\bf D},$ list the experiments in order of decreasing a concentration.					
	(highest concentration)				
	(lowest concentration) [1]				

(iii) Fig. 8.2 shows a piece of magnesium in a beaker of dilute hydrochloric acid. The hydrogen ions, present in all aqueous acids, are shown by the symbol • .

	Fig. 8.2
	Explain, in terms of ions, why the rate of reaction will change when the concentration of the acid is changed.
	,
	[3]
(b)	Magnesium reacts with hydrochloric acid to form magnesium chloride and hydrogen gas.
	The chemical formula for magnesium chloride is $MgCl_2$. Use the Periodic Table on page 20 to calculate the relative formula mass of magnesium chloride.
	Show your working.
	[2]

9	(a) Fig. 9.1 shows a teacher with a torch (flash at the mirror.	light). He switches the torch on and points it
		N
	The state of the s	
	Fig. 9.1	
	A ray of light from the torch reflects off the	mirror.
	Use a ruler to draw a ray of light	
	(i) from the torch to the mirror,	
	(ii) reflecting off the mirror.	[2]
	(b) A torch contains two cells providing a total torch is lit, the current flowing through the la	
	(i) Calculate the resistance of the lamp.	
	State the formula that you use and sho	w your working.
	formula	
	working	
		[2]

(ii) To measure the current through the lamp and the voltage across the lamp, the student set up the circuit in Fig. 9.2.

For Examiner's Use

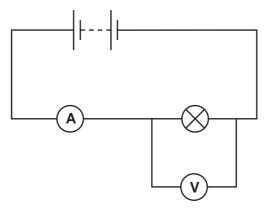


Fig. 9.2

The student sketched a graph of current against voltage for the lamp. This is shown in Fig. 9.3.

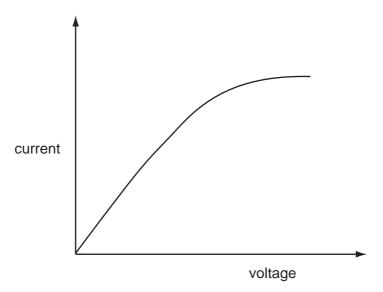


Fig. 9.3

Does the lamp obey Ohms Law?

Explain your answer.

[2]

DATA SHEET
The Periodic Table of the Elements

	0	4 Helium	20 Neon 10 40 Ar Argan	84 Kr Krypton 36	131 Xe Xenon Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	II/		19 Fluorine 9 35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	IN		16 Oxygen 8 32 S Sulfur	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	>		14 Nitrogen 7 31 91 Phosphorus 15	75 AS Arsenic	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fm Fermium
	<u> </u>		Carbon 6 Carbon 8 Silicon 114	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead		165 Ho Holmium 67	Einsteinium
	=		11 Boron 5 27 A t Aluminium	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66	C4 Californium 98
				65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Cu Copper 29	108 Ag Siiver 47	197 Au Gold		157 Gd Gadolinium 64	Curium 96
Group				S9 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Gre				59 Co Cobalt 27	Rhodium 45	192 I r Iridium 77		Sm Samarium 62	Pu Plutonium 94
		1 Hydrogen		56 Fe Iron	Rut Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Np Neptunium 93
				Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium 92
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Cer ium 58	232 Th Thorium
				48 TI Titanium 22	91 Zr Ziroonium 40	178 Ha fnium * 72			mic mass ibol mic) number
				45 Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 ,	AC Actinium 89	d series series	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Be Berylium 4 24 Mg Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	« × ∞
	_		7 Lithium 3 23 Na Sodium 11 11 11 11 11 11 11 11	39 K Potassium	Rb Rubidium 37	Cs Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.