

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

		1 hour 15 minutes
Paper 2 (Core)		May/June 2007
COMBINED SCIENCE		0653/02
CENTRE NUMBER	CANDIDATE NUMBER	
CANDIDATE NAME		

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 18 printed pages and 2 blank pages.

BLANK PAGE

[3]

Fig. 1.1 shows a vertical section through a human heart, drawn as though the person is 1 facing you.

Fig. 1.1

(a)	Name the	parts of the	heart labelle	ed A .	B and C.
١	~,	i tarrio trio	parto or tiro	modit labolic	, , , , , , , , , , , , , , , , , , ,	D and O .

Α	
В	
С	

- (b) (i) Use a pencil to lightly shade in the places in Fig. 1.1 where there is oxygenated blood. [1]
 - (ii) Where does the blood become oxygenated? [1]
- (c) On the diagram, draw two arrows to show how blood travels through the left hand side of the heart. [1]
- (d) The heart muscle is supplied with blood through the coronary arteries.

	[0]
Explain why a blockage in these arteries can cause a heart attack.	

2 Fig. 2.1 shows the structure of an atom of an element Q.

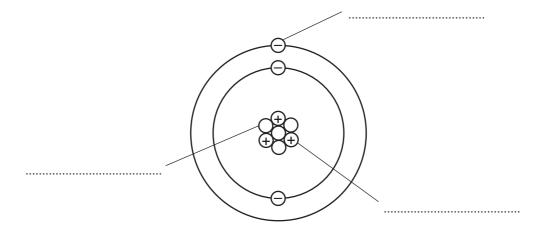


Fig. 2.1

(a) (i) Label the particles shown in Fig. 2.1.

[3]

(ii) Use the Periodic Table on page 20 to find the chemical symbol of element **Q**, and explain your answer.

chemical syr	nbol of Q	 	
explanation		 	
			[2]

(b) Fig. 2.2 shows calcium metal reacting in water which contains Universal Indicator. The gas produced during the reaction was tested as shown.

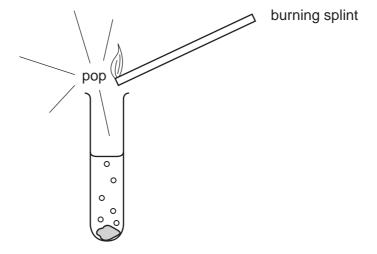


Fig. 2.2

(i) Name the gas produced in this reaction.

[1]

	(ii)	State and explain the colour change of the Universal Indicator during the reaction.
		[2]
(c)	The	e piece of iron in Fig. 2.3 will take part in a chemical reaction which involves water.
		water
		Fig. 2.3
		te two ways in which the reaction of iron in Fig. 2.3 is different from the reaction of cium in Fig. 2.2.
	1.	
	2.	

[2]

- 3 (a) A model car is at rest. A force is applied and it starts to move.
 - (i) Complete the formula for calculating the work done on the model car using some of the words in the list.

work done on model car = _____ X ____ [2]

(ii) State one other way in which a force can affect an object.

(b) Fig. 3.1 shows the speed-time graph for a car journey.

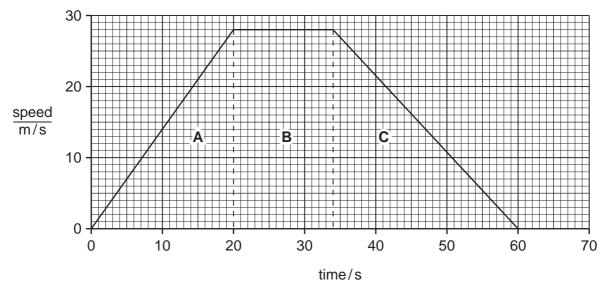
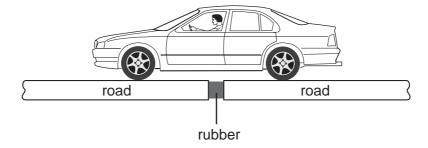


Fig. 3.1


(i) Which section of the graph, **A**, **B**, or **C**, represents a constant speed? Explain your answer.

______[

(ii) Calculate the acceleration of the car during the first 20 seconds.
Show your working.

m/s ²	[2]
	[4]

(c) The car travels over a long bridge. The bridge is made in sections, with gaps between each section. The gaps are filled with rubber.

Suggest why

(i) these gaps are left,

[1]

(ii) these gaps are filled with rubber.

[1]

4 In Mexico, some areas of tropical rainforest have been cleared for growing cacao trees. Beans from cacao trees are used for making chocolate. The beans are seeds, and they develop from fertilised flowers.

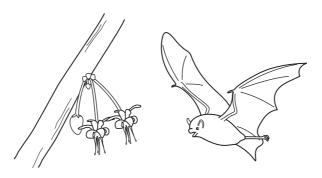

Bats are flying mammals. Table 4.1 shows information about the numbers of bats found in an undisturbed tropical rainforest and in a cacao plantation.

Table 4.1

habitat	number of different species of bats	number of bat species found only in that habitat	number of individual bats
undisturbed rainforest	27	14	423
cacao plantation	21	1	644

(a)	Which habitat has the higher species diversity of bats?
	Explain your answer.
	habitat
	explanation [1]
(b)	Using the data in Table 4.1, suggest one reason, other than species diversity, why leaving some areas of tropical rainforests undisturbed is important for the conservation of bats.
	[1]

(c) Some bats feed on nectar.

	(i)	How might this explair habitats?	the results	for the numbers	s of individual bats	in the two
						[1]
	(ii)	Explain how bats could	help to increa	ase the yield of I	beans from a cacao	plantation.
						[2]
(d)	Coi	mplete these sentences,	using some of	of the words in th	ne list.	
cl	one	s genetically	not	sexually	unhealthy	zygotes
	Cad	cao trees can reproduce		, usi	ing flowers and mak	king seeds.
	- .					
	Ine	e new trees that are prod				
		e new trees that are prod mers can propagate cac	uced are		different from e	each other.
			uced are		different from e	each other.
(e)	Far	mers can propagate cac	uced are ao trees asex	cually. The nev	different from e	each other.
(e)	Far	mers can propagate cac	uced are ao trees asex	cually. The new	different from e	each other. duced are
(e)	Far	mers can propagate cac	uced are ao trees asex	cually. The new	different from e	each other.
(e)	Far	mers can propagate cac	uced are ao trees asex	cually. The new	different from e	each other.

5 Lead bromide is a compound. It can be broken down into its elements by using the apparatus shown in Fig. 5.1.

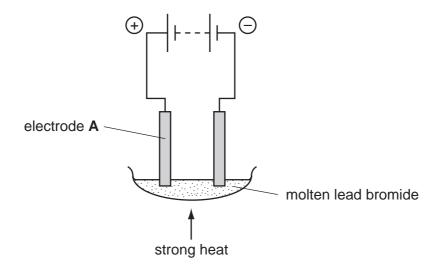


Fig. 5.1

(1)	Name the process shown in Fig. 5.1.	
		[1]
(ii)	Name the non-metallic element which is produced in this process.	
		[1]
(iii)	Explain why the lead bromide shown in Fig. 5.1 has to be molten in order for process to work.	the
		••••
		[1]
(iv)	Is electrode A in Fig. 5.1 the anode or the cathode?	
	Explain your answer.	
		[1]

(b)		process similar to that in Fig. 5.1 is used in the chemical industry to produce to ortant element chlorine.	he
	(i)	The formula of the molecules in chlorine gas is Cl_2 .	
		Explain what is meant by this formula.	
			••••
			••••
			[2]
	(ii)	Chlorine is used to treat water supplies.	
		Explain this use of chlorine.	
			[1]
	(iii)	Chlorine reacts with aluminium to form aluminium chloride. The symbolic equation for this reaction is shown below.	
		Complete the balancing of this equation.	
		$2 Al$ + Cl_2 \longrightarrow $2 AlCl_3$	[1]

6 (a) Fig. 6.1 shows a simple circuit containing two identical lamps.

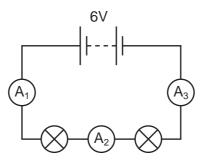


Fig. 6.1

Ammeter A_1 reads 0.15 A.

Write down the readings on

ammeter A ₂ ,	
ammeter A ₃ .	[1]

(b) Fig. 6.2 shows an electricity generating station.

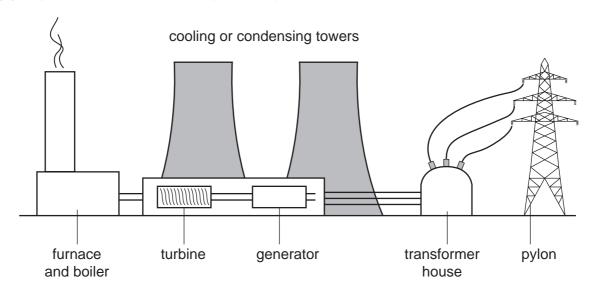


Fig. 6.2

(i)	Name two	fossil	fuels	which	could	be	burned	in	the	furnace	to	heat	water	in	the
	boiler.														

1. _____

2. [2]

(ii)	Complete the energy transfer statements below.	
	In the furnace energy is converted into heat ener	gy.
	In the turbine the energy in the steam is converted into the	
	energy of the turbine.	
	The generator converts kinetic energy into energy.	[3]
(iii)	The electrical output from a power station is at 25 000 V. The voltage is stepped to 400 000 V by a transformer. The number of turns on the primary coil is 20 000.	up
	Calculate the number of turns on the secondary coil.	
	State the formula that you use and show your working.	
	formula used	
	working	
	turns	[3]
(iv)	Why does the electrical output from this power station have to be a.c.?	
		[1]

7 Fig. 7.1 shows a car in motion. The energy which is needed to make the car move comes from the burning of a mixture of air and fuel in the engine.

Fig. 7.1

(a)	Air	is a mixture of gases.
	(i)	Which gas makes up the greatest percentage of the air?
		[1]
	(ii)	Describe one difference between a mixture of two gases and a compound formed from two gases.
		[1]
(b)		some modern cars, two fuels are used. One of these is hydrogen gas and the other asoline, a mixture of hydrocarbons. Only one fuel is used at a time.
	(i)	Explain why the fuel is said to be oxidised in the engine.
		[1]
	(ii)	Suggest why, when hydrogen is used, the exhaust gases are not toxic (poisonous), but when gasoline is used the exhaust gases are toxic.
		[2]

	`,	neutralise a spillage of sulphuric acid safely. odium sodium carbonate sodium chloride sodium sulphate	_
	(ii)	Underline one of the following substances to show which could be used to	1] o
	(i)	State the chemical formula of sulphuric acid.	
(c)	The	car battery contains sulphuric acid.	
		[2	2]
	(iii)	Describe a chemical test which could be used to show that the exhaust gase contain carbon dioxide.	S

8	(a)	Explain why sound needs a medium to travel through.	
			[2]

(b) Fig. 8.1 shows a student carrying out an experiment to find the speed of sound in air.

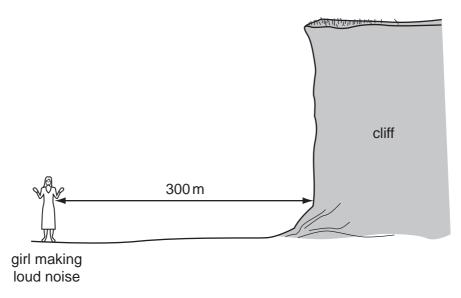


Fig. 8.1

She stood 300 m from the edge of a cliff and made a loud noise. The echo reached her 2.0 s later.

Calculate the speed of sound in air using these results.

State the formula that you use and show your working.

formula used

working

____m/s [2]

(c) A sound has a frequency of 500 Hz.

(i) Explain the meaning of the term frequency.

[1]

[1]

(ii) State the approximate range of audible frequencies detected by the normal human ear.

(d) Fig. 8.2 shows the oscilloscope trace of two different sounds, **P** and **Q**. The settings on the oscilloscope are exactly the same for both.

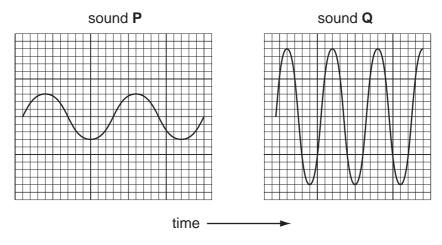


Fig. 8.2

State two ways in which sound P differs from sound Q.

[2]

9	(a)		Is in all of our tissues need a constant supply of glucose. Glucose is transported und the body in the blood.
		(i)	Name the part of the blood in which glucose is transported.
			[1]
		(ii)	Explain why cells in the human body need glucose.
			[2]
	(b)		nts make glucose in photosynthesis. They can then build the glucose into other stances, including cellulose and proteins.
		(i)	State the function of cellulose in a plant.
			[1]
		(ii)	Describe how you would test part of a plant to see if it contains proteins.
			[3]
	(c)		metabolic reactions in animals and plants are catalysed by enzymes. The perature at which an enzyme works best is called its optimum temperature.
		Pla	nt enzymes are denatured at lower temperatures than human enzymes.
		(i)	Explain what is meant by the term denatured.
			[1]
		(ii)	Explain why it is an advantage to plants that their enzymes have a lower optimum temperature than human enzymes.
			[1]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Ne Neon	40 Ar Argon	84 Ž 84	36	131	Xenon Xenon 54		Radon	8		Lutetium		בֿ	Lawrencium 103
	NII/		19 F Fluorine 9	35.5 C 1 Chlorine	80 B romine	35	127	lodine 53		At Astatine	3		173 Yb Ytterbium 70		N _o	Nobelium 102
	VI		16 O Oxygen 8	32 S Sulphur 16	Selenium	34	128	Le Tellurium 52		Po Polonium			169 Tm Thulium 69		Md	Mendelevium 101
	>		14 N Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic	33	122	SD Antimony 51	209	Bismuth	3		167 Er Erbium 68		Fm	Fermium 100
	>		12 C Carbon 6	28 Si Silicon	73 Ge Germanium	32	119	So Tin	207	Pp	70		165 Ho Holmium 67		Es	Einsteinium 99
	≡		11 Boron 5	27 A1 Aluminium 13	70 Ga	31	115	Indium 49	204	T.1 Thallium	5		162 Dy Dysprosium 66		ర	Californium 98
					65 Zn Zinc	30	112	Cadmium 48	201	Hg Mercury	3		159 Tb Terbium 65		B	Berkelium 97
					64 C 0000	29	108	Ag Silver 47	197	Au Gold	2		157 Gd Gadolinium 64		Cm	Curium 96
Group					69 Z	28	106	Palladium 46	195	Platinum	2		152 Eu Europium 63		Am	Americium 95
Ď					59 Sobalt	27	103	Khodium 45	192	Lidium	3		Sm Samarium 62		Pu	Plutonium 94
		1 Hydrogen			56 T	26	101	Ruthenium	190	Osmium	2		Pm Promethium 61	_	N O	Neptunium 93
					Mn Manganese	25		Technetium 43	186	Realium	2		Neodymium 60	238		Uranium 92
					52 Chromium	24	96	Molybdenum 42	184	Tungsten	t		141 Pr Praseodymium 59		Ра	Protactinium 91
					51 Vanadium	23	63	Niobium 41	181	Tantalum	2		140 Ce Cerium 58	232	卢	Thorium 90
					48	22	91	Zirconium 40	178	Hafinium 72			1	mic mass	lodr	nic) number
					Scandium	21	88	Yttrium 39	139	Lanthanum	227	Actinium Actinium 1	d series series	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=		Be Beryllium	24 Mg Magnesium 12	Calcium	22	88 (Strontium 38	137	Barium Barium	226	Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	a	×	٩
	_		7 Lithium 3	23 Na Sodium	39 Notessium	19	82	Kubidium 37	133	Caesium	3	Fr Francium 87	*58-71 L		Key	Q

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).