CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October / November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

. 490 -		IGCSE – (October/November 20	13	0620	32
(a) C a	nd F					[1]
(b) A						[1]
(c) B						[1]
(d) D						[1]
(e) E						[1]
(f) A a	nd D					[1]
						[Total: 6]
(a) (i)	two	atoms per molecul	<u>le</u>			[1]
(ii)	7e ir	n outer shell or leve	el / same number of out	ter electror	ns / need to gain or	ne electron [1]
(iii)	diffe	rent number of en	ergy levels / different nu	ımber of e	lectrons	[1]
(iv)				T		7
		halogen	solid, liquid or gas at room temperature		colour	
		chlorine	gas	yellow	/ yellow green / green	
		bromine	liquid	or	<u>n</u> / red- <u>brown</u> / ange- <u>brown</u> red / orange	
		iodine	solid	pι	grey / silver-grey / urple / violet T: blue-black	
	ГОИ	E: one mark for e	ach vertical column			[2]
3nb	ps ar	ormula, AsF ₃ nd 1bp around all 3 d 1nbp around arso				[1] [1] [1]
Ag(C <i>l</i> rea	ncts with CuC <i>l</i> ed) light increases	/ causes forward reaction the amount of silver (ar reaction / uses up silver	nd so darke	ens glass)	[1] [1] es darkness)[1
						[Total: 11]

Mark Scheme

Syllabus

Paper

Page 2

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0620	32

3 (a) (i) the (forward) reaction is endothermic

[1]

[1]

(ii) none volume of reactants and products the same **ACCEPT**: number of moles or molecules

[1]

(iii) the reaction (between oxygen and nitric oxide) is exothermic [1] high temperatures push equilibrium to left / high temperatures decrease yield of products / low temperatures favour forward reaction [1]

(iv) $4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$ not balanced = (1) only

[2]

(v) (cost of) high amount of electricity / energy

[1]

(b) (i) contains more nitrogen

[1] [1]

(ii) photosynthesis chlorophyll is catalyst / chlorophyll absorbs light carbon dioxide and water react

[1] [1]

to make glucose / carbohydrates / starch / sugar / named sugar

[1]

[Total: 13]

(a) Any one of:

 $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ for correct equation (2) not balanced = (1) only

any four of:

coke burns to form carbon dioxide / C + $O_2 \rightarrow CO_2$

this reacts with more carbon to form carbon monoxide / C + $CO_2 \rightarrow 2CO$

calcium carbonate decomposes to form calcium oxide and carbon dioxide / CaCO₃ → CaO + CO_2

calcium oxide / calcium carbonate reacts with silica / silicon oxide / silicon(IV) oxide (in ore) to form calcium silicate / slag / CaO + SiO₂ \rightarrow CaSiO₃ or CaCO₃ + SiO₂ \rightarrow CaSiO₃ + CO₂

the reaction between carbon and oxygen is exothermic / produces heat / coke is used as a fuel / the slag floats on the (molten) iron / the slag and molten iron can be run off separately

[6]

		IGCSE – October/November 2013	0620	32		
(b)	(i)	greenhouse effect / CO ₂ is a greenhouse gas global warming / ice caps melting / suitable example		[1] [1]		
	(ii)	[1] [1]				
	(iii)	[1]				
		anode reaction $2O^{2-} \rightarrow O_2 + 4e$ not balanced = (1) only		[2]		
				[Total: 13]		
5 (a)	(a) because they have more than one oxidation state or valency / form ions with differe charges					
	there are two iron oxides (iron(III) oxide and iron(II) oxide) / iron forms Fe^{2+} and F compounds / iron forms iron(II) and iron(III) compounds					
(b)	(b) (i) to remove the precipitate / remove the silver(I) chromate(VI) / remove the residue					
	(ii) to remove <u>soluble</u> impurities / remove named <u>soluble</u> salt e.g. potassium nitrat reactants					
	(iii)	to dry solid / to remove water		[1]		
(c)	(c) (i) need one mole of potassium chromate(VI) for two moles of silver(I) nitrate references to mole ratio					
	(ii)	mass of AgNO ₃ needed is $170 \times 0.2 \times 0.1 = 3.4g$ NOTE : if answer given is 34 they have omitted 0.1 ALLOW : (1) ecf		[2]		
	(iii)	number of moles of AgNO ₃ used = $0.02 \times 0.2 = 0.004$		[1]		
		number of moles of Ag ₂ CrO ₄ formed = 0.002		[1]		
		mass of one mole of $Ag_2CrO_4 = 332g$				
		mass of Ag ₂ CrO ₄ formed = 0.664g NOTE : use ecf when appropriate		[1]		

Mark Scheme

Syllabus

Paper

Page 4

[Total: 11]

	Page 5			Mark Scheme	Syllabus	Paper	
				IGCSE – October/November 2013 062		32	
6	(a)	(i)	Cu(C	$OH)_2 \rightarrow CuO + H_2O$		[1]	
		(ii)	Rb			[1]	
	(b)	(i)	elect	tron loss		[1]	
		(ii)	beca	ause they can accept electrons		[1]	
	(c)	(i)	copp	per and mercury	nd mercury		
		(ii)		add copper / mercury / metal to (named) acid and no reaction / no bubble nydrogen			
	(d)	(i)	Mn			[1]	
		(ii)		ution) becomes colourless / decolourises : clear		[1]	
						[Total: 8]	
7	(a)	(i)	hydr	ains <u>only</u> carbon, hydrogen and oxygen ogen (atom) to oxygen (atom) ratio is 2:1 OW : C:H:O as 1:2:1 or C _n (H ₂ O) _n		[1] [1]	
		(ii)		densation merisation		[1] [1]	
				/ micro-organisms / plants / animals / metabolic reaining energy from food / glucose / nutrients	actions	[1] [1]	
(ii) $2C_2H_5OH + 2CO_2$ allow: C_2H_6O for C_2H_5OH not balanced = (1) only				[2]			
		(iii)		revent aerobic respiration / to get anaerobic respiration acid / carboxylic acids being formed / to prevent or		ethanoic acid / [1]	
	 (c) displayed formula of methyl butanoate NOTE: all bonds must be shown NOTE: award (1) if error in alkyl groups but correct displayed structure of –COO- (d) (i) alcohol, e.g. glycerol, circled ALLOW: if only part of glycerol molecule is circled as long as it involves an Cooperation 		[2] O-				
			[1] n OH group				
		(ii)		rated ect reason based on group C ₁₇ H ₃₅ / all C–C bonds /	no C = C bonds	[1]	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0620	32
,			
(iii) sal	t / carboxylate / alkanoate		[1]

(iii)	salt / carboxylate / alkanoate (making) soap ACCEPT: detergent / washing	[1] [1]
co	least one correct amide linkage –CONH– ntinuation shown at both ends of chain agram showing three (different) amino acid residues	[1] [1] [1]

[Total: 18]