CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		e 2 Mark Scheme		Paper
			IGCSE – October/November 2013	0620	31
1	(a)	uranium /		[1]	
	(b)	graphite /	carbon		[1]
	(c)		/ titanium / mercury / gold bon / graphite		[1]
	(d)	helium			[1]
	(e)	nitrogen /	phosphorus		[1]
	(f)	argon ACCEPT	: any ion 2 + 8 + 8 e.g. K ⁺ etc.		[1]
	(g)	tellurium ACCEPT	: correct symbol		[1] [Total: 7]
2	(a)	Any three iron is ha iron has h iron has h iron has r NOTE: ha NOT: app ACCEPT	s harder (1)	[3]	
	(b)	potassiur zinc copper	n hydrogen (1) and potassium hydroxide (1) hydrogen (1) and zinc oxide (1) no reaction (1)		[5]
					[Total: 8]

1 age 5				er/November 2013	0620	31
3	(a)	(i)	ractional distillation (liquid) air			[1] [1]
		(ii)	cracking / heat in presence of alkane / petroleum so give an alkene and hydro			[1] [1] [1]
			OR: electrolysis (1) named electrolyte (1) nydrogen at cathode (1)			
			OR: from methane (1) react water / steam (1) neat catalyst (1) only ACCEPT: water with m	ethane or electrolysis		
	(b)	(i)	the pair with both graphs co			[1]
		(ii)	nigh pressure favours side v his is RHS / product / ammo %NH ₃ / yield increases as p		oles	[1] [1] [1]
			the forward reaction is exothexothermic reactions favour %NH ₃ / yield decreases as t ACCEPT: reverse argumen	ed by low temperatures emperature increases		[1] [1] [1]
	((iii)		of energy particles need to r	eact	[1] [1]
			OR: economic rate at lower	temperature so higher yield		[Total: 14]
4	(a)	(i)	(mass at t =0) – (mass at t = NOTE: must have mass at t			[1]
		(ii)	fastest at origin slowing down between origi where gradrient = 0 three of above in approxima	n and flat section gradient =	0	[2]
		(iii)	3 correct comments about g	•		[2]
		- ,	2 correct comments about g 1 correct comment about gr	radient = [1]		[2]
	(b)		at origin and smaller gradie e final mass just approximat			[1] [1]

Syllabus

Paper

Page 3

Pa	age 4	ļ.	Mark Scheme	Syllabus	Paper
			IGCSE – October/November 2013	0620	31
(c)	(i)	sma lowe	[1] [1]		
	(ii)	mole collid	[1] [1]		
(d)	cor ma ma	ncentra ximun ss of o	of moles of HCl in 40cm^3 of hydrochloric acid, ation 2.0mol / $dm^3 = 0.04 \times 2.0 = 0.08$ n number of moles of CO_2 formed = 0.04 one mole of $CO_2 = 44 \text{g}$ n mass of CO_2 lost = $0.04 \times 44 = 1.76 \text{g}$		[1] [1] [1] [1] [Total: 15]
5 (a)	(i)		e same molecular formula / both are C ₅ H ₁₂ have different structural formulae / different structu	res	[1] [1]
	(ii)	CH ₃ -	-CH ₂ -CH=CH-CH ₃ / any other correct isomer		[1]
(b)	(i)		-(Br)-CH ₂ Br -: C ₂ H ₄ Br ₂		[1]
		dibro	omoethane E: numbers not required but if given must be 1, 2		[1]
	(ii)		-CH ₂ -CH ₃ :: C ₃ H ₈		[1]
		prop	ane		[1]
	(iii)	buta	-CH ₂ -CH ₂ -CH ₂ -OH / CH ₃ -CH ₂ -CH(OH)-CH ₃ nol bers not required but if given must be correct and n	natch formula	[1] [1]
		Hulli	bers not required but if given must be correct and n	natori iornidia	
(c)	(i)		-CH=CH-CH ₂ -CH ₃ -CH=CH-CH ₃		[1] [1]
	(ii)	colo	/ purple urless -: clear		[1] [1]
(d)			(CN)-CH ₂ -CH(CN)-		[1]
	correct repeat unit CH ₂ -CH(CN) COND : at least 2 units in diagram continuation				

	Page 5			Mark Scheme		Syllabus	Paper
				IGCSE – October/November 2013 0620		31	
6	(a)	(a) (i) (attractive force between) positive ions and (negative) electrons opposite charges attract ONLY [1] electrostatic attraction ONLY [1]					[1] [1]
		(ii)	(ii) lattice / rows / layers of lead ions / cations / positive ions NOT: atoms / protons / nuclei can slide past each other / the bonds are non-directional				[1] [1]
			oan	side past each other / the bonds are non-directional			[,]
	(b)	(i) anhydrous coball ACCEPT: hydrou			palt chloride becomes hydrated rous		[1]
		(ii)		on dioxide um hydrox	is acidic ide and calcium oxide are bases / alkalis		[1] [1]
	((iii)	water, calcium carbonate and sodium carbonate ACCEPT: sodium bicarbonate				[2]
	(c)	number of moles of CO_2 formed = 2.112 / 44 = 0.048 number of moles of H_2O formed = 0.432 / 18 = 0.024					[1] [1]
		$x = 2$ and $y = 1$ NOT : ecf from this line formula is $2PbCO_3.Pb(OH)_2$ / $Pb(OH)_2$. $2PbCO_3$					
							[Total:12]
7	(a)	(i) hydrogen (atoms) NOT: substitute		ogen (ator : substitut	ms) replaced by (atoms) of a different element	ment e.g. chlorine	[1]
		(ii)	light	required			[1]
	(b)		exothermic reaction gives out energy				[1]
	take (c) bond C-H C <i>l</i> -C		othermic reaction absorbs es in energy			[1]	
				oken	energy +412		
			C <i>l</i> I ene	rgy	+242 +654		[1]
		bonds fo		rmed	energy -338		
		H-C tota	s <i>l</i> Lene	rgy	–431 –769		[1]
		ene	rgy c	hange	–115 ates exothermic		[1] [1]
							[Total: 8]