CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0620	31

1	(a)	diffusion or fractional distillation	•

	` '		
	(b) fra	ctional distillation;	
	(c) sin	nple distillation;	
	(d) cry	stallisation;	
	(e) filti	ation;	
	(f) ch	romatography;	
			[Total: 6]
2	(a) (i)	become darker;	[1]
	(ii)	increase;	[1]
	(iii)		[1]
		not: brown solid;	[1]
	(b) (i)	same Z / same number of protons; accept: atoms of the same element	[1]
		different number of neutrons / different nucleon number / different mass number;	[1]
	(ii)	53 protons and 53 electrons;	[1]
		78 neutrons;	[1]
	(iii)	xenon;	[1]
		F ₃ / F ₃ Br; F ₅ / F ₅ Br;	[1] [1]
	וום	5 / I 5DI,	
			[Total: 11]

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0620	31

3 (a) (i) any three from:

particles have more energy;

move faster;

collide more frequently;

more successful collisions;

accept: atoms or molecules for particles

not: electrons
not: vibrate more

(ii) reaction faster with temperature increase; [1]

enzymes denatured / destroyed;
not: killed

[1]

[3]

(b) (i) bigger initial gradient; [1] same final volume of nitrogen; [1]

(ii) decrease / slows down; [1]

(iii) concentration of organic compound decreases; [2]

compound used up = [1] **or:** fewer particles;

collision rate decreases;

(c) (i) carbon monoxide-incomplete combustion; [1] carbon - containing fuel / fossil fuel / petrol; [1]

oxides of nitrogen - oxygen and nitrogen react; [1]

at high temperature / in engine;

[1]

[1]

not: in exhaust

(ii) carbon monoxide to carbon dioxide; [1] oxides of nitrogen to nitrogen; [1]

oxides of nitrogen to nitrogen; correct balanced equation;

[Total: 17]

	Page 4		•	Mark Scheme		Paper
				IGCSE – October/November 2012	0620	31
4 (a)		_		valent; mer made from monomers;		[1]
	(b)	(i)	high hard brittle insol	•		[3]
		(ii)		on / diamond / silicon / boron; graphite		[1]
	(c)	(i)	sodi	um hydroxide / any named alkali / reactive metal;		[1]
		(ii)		ed acid; onium oxide;		[1] [1]
						[Total: 8]
5	(a)	(i)	influe or: turns	of reaction; enced by light / only happens in light; s light into chemical energy = [2] ept: light is catalyst = [1]		[1] [1]
		(ii)	they appror: phot corredioxi anyt effect or: chlor make	action of silver halides; are reduced to silver / 2AgCl → 2Ag + Cl₂; copriate importance given; cosynthesis; ect comment about chemistry carbon dioxide to carb ide to oxygen; hing sensible e.g. its role in the food chain or decrea ct or oxygen for respiration; rination; ing chloroalkanes; copriate importance given;	•	[1] [1] [1]
	(b)	(i)	-	sure would move position of equilibrium to right / incease pressure favours side with less (gas) molecules	=	[1] [1]
		(ii)		ease temperature favours endothermic reaction; ess products/reduce yield;		[1] [1]
		(iii)	keep	os rate high / increase rate at lower temperatures;		[1]

Page 5			Mark Scheme	Syllabus	Paper	
				IGCSE – October/November 2012	0620	31
	(c)	eac 4 e 2 nt	[1] [1] [1]			
						[Total: 13]
6	(a)	(i)	ol;	[1] [1] [1]		
		(ii)	poly	ester;		[1]
			polya	w: named polyester amide; w: nylon		[1]
	(b)			ect amide linkage;		[1]
		– N	HCO	amide linkage correctly orientated – followed by – NHCO –; onomers are amino acids not diamines or dicarboxy	lic acid	[1]
	(c)	bro uns sati		[1] [1] [1]		
		or:				
		or:	acidi from	s purple; ic potassium manganate(VII) i purple/pink to colourless; not: clear s purple;		
						[Total: 10]
7	(a)	(i)	boilir acce	ing point is below 25°C; ng point above 25°C; ept: argument based on actual values e: 25°C is between mp and bp = [2]		[1] [1]
		(ii)		ntium loses 2e; ur gains 2e;		[1] [1]
		(iii)	-	rogen chloride / hydrochloric acid; ept: sulfurous acid or sulfur dioxide		[1]
		whi		en strontium chloride has ions/ionic compound; ch can move; ur chloride has no ions / only molecules / molecular	/ covalent;	[1] [1] [1]

(b) (i)	strontium carbonate does not dissolve / no effervescence; note: not just reaction is complete	[1]
(ii)	to remove excess/unreacted / undissolved strontium carbonate;	[1]
(iii)	water of crystallisation needed / $6H_2O$ in crystals / would get anhydrous salt / would not get hydrated salt / crystals dehydrate; not: just to obtain crystals	[1]
nur ma the per acc	mber of moles of HC l used = 0.05 × 2 = 0.1 mber of moles of SrC l_2 .6 H $_2$ O which could be formed. = 0.05 ss of one mole of SrC l_2 .6H $_2$ O is 267 g coretical yield of SrC l_2 .6H $_2$ O = 0.05 × 267 = 13.35 g recentage yield = 6.4/13.35 × 100 = 47.9% cept: 48% bw: ecf	[1] [1] [1] [1]

Syllabus

0620

Mark Scheme

IGCSE – October/November 2012

Page 6

[Total: 15]

Paper

31