MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper	
			IGCSE – October/November 2011	0620	32	
1	(a) 27p 27p		27e 25e		[1] [1]	
	(b) (i)		e proton number / same number of protons / same rent nucleon number / different number of neutrons		[1] number [1]	
	(ii)	allo	e electron <u>distribution</u> w: same proton number and same number of electr same number of electrons / same number of shells		[1]	
	(iii)	(iii) industrial detection of leaks / thickness of paper etc. / nuclear fuel for generating electricity / nuclear weapons / radiographs of welds / measuring wear / sterilising food not: carbon dating				
		stud	ical treatment of cancer, radiotherapy, treatment of ies in body, sterilising equipment, locating tumours ept: X-rays only once	thyroid gland, X r	ays, tracer [1]	
2	· · /		form sulfur dioxide / any problem associated with acid rain / sulfur diox	kide is poisonous	[1] [1]	
	(b) (i)	burn	er surface area s / reacts faster / greater number of collisions more sulfur dioxide		[1] [1]	
	(ii)		microbes / bacteria / fungi etc. e pt: anti-oxidant / stops oxygen oxidising juice / pre	events growth of t	[1] bacteria	
	(iii)		ch / refrigerant / making wine / fumigant /insecticide making sulfuric acid	/ dyes	[1]	
	tem pres	perat ssure	$O_2 \rightarrow 2SO_3$ ture 400 to 450 °C 1 to 10 atmospheres ranadium(V) oxide / vanadium oxide		[1] [1] [1] [1]	
	• •		$H_2SO_4 \rightarrow H_2S_2O_7$ + $H_2O \rightarrow 2H_2SO_4$		[1] [1]	

Page 3		e 3	Mark Scheme: Teachers' version	Syllabus	Paper	
			IGCSE – October/November 2011	0620	32	
3	(a) (i	•	heat / roast in air / oxygen accept: burn in air / oxygen		[1]	
	(i	i) ((reduce) with carbon / carbon monoxide		[1]	
	(b) test it with both hydrochloric acid and sodium hydroxide(aq) accept: any named strong acid and any strong alkali if only acid and alkali given then max = 3				[1]	
			c oxide reacts with acid		[1]	
		acidic oxide reacts with alkali/base amphoteric reacts with both			[1] [1]	
		accept: for react – form salt and water				
	(c) (i		at equilibrium rate of forward reaction equals rate of back reaction /	concontrations rom	[1]	
		(constant / macroscopic properties do not change with accept: amounts do not change with time		[1]	
	(i	ł	equilibrium moves to left (SbOC <i>l</i> used up) hydrochloric acid removed by reacting with SbOC <i>l</i> precipitate dissolves in hydrochloric acid		[1]	
	(ii	i) a	add water / dilute / add an alkali / add more SbC l_3 / ad	ld a base / add a ca	irbonate [1]	
4	(a) (i	,	ScF3 correct charges		[1] [1]	
			7o and 1x around fluorine		[1]	
	(i	, t	strong <u>forces / bonds</u> between <u>ions</u> accept: lattice as alternative to bonds / requires a lot to break <u>bond</u> between <u>ions</u> not: giant molecular / IMFs	of energy	[1]	
	(b) (i	i) ´	1Si surrounded by 4O		[1]	
			1O surrounded by 2Si looks or stated to be tetrahedral		[1]	
		I			[1]	
	(i	•	silicon(IV) oxide does not conduct and (molten) scane does conduct	lium fluoride	[1]	
			not: good and poor		[1]	
	(iii	i) <	scandium fluoride contains <u>ions</u> (silicon(IV) oxide doe	s not)	[1]	
	(m		ions can move when molten or in solution	0 1101/	[1]	

Page 4		ge 4	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011	0620	32
5	(a)) CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH 88 156 to159 °C			[1] [1] [1]
	(b)	(sam same cons	two from: ne) general (molecular) formula e functional group ecutive members differ by –CH ₂ mon methods of preparation		
	(c)	2bp a	ect structure and 4bp around carbon and 2nbp around oxygen on hydrogens		[1] [1] [1]
	(d)		correct structural formula for propanoic acid allow: OH but all other bonds to be shown		[1]
		 	air / oxygen bacteria / microbes / micro-organisms accept: mother of vinegar not: yeast		[1] [1]
	(e)		yl ethanoate v : CH ₃ COOC ₃ H ₇ not: C ₅ H ₁₀ O ₂		[1] [1]

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011	0620	32
6	(a) (i)		eutralise all the acid / so all acid reacts reaction goes to completion		[1]
	(ii)		ove excess carbonate / removes unreacted carbona remove solid	ate	[1]
	(iii)	nee	d water of crystallisation / hydrated crystals / to get	crystals	[1]
	(iv)	dry v acce	r / decant / wash crystals with filter paper or tissues etc. ept: in warm oven / warm place / in sun just heat		[1] [1]
	(b) (i)	pota	ssium carbonate is soluble / both salts soluble		[1]
	(ii)	acco titrat use	potassium carbonate solution ept: implication of solution – in pipette / burette / 25 <u>te</u> / titration term required an indicator accept: any named acid/base indicator eat without indicator / use carbon to remove indicator	r	[1] [1] [1] [1]
	ma the the the the the the x = if x	ss of mass numl numl mass mass 126/ giver	hydrated magnesium sulfate = 1.476 g barium sulfate formed = 1.398 g s of one mole of BaSO ₄ = 233 g ber of moles of BaSO ₄ formed = 0.006 ber of moles of MgSO ₄ .xH ₂ O used in experiment = 0 s of one mole of MgSO ₄ .xH ₂ O = $1.476/0.006 = 246 \text{ g}$ s of xH ₂ O in one mole of MgSO ₄ .xH ₂ O = $246 - 120 \text{ g}$ (18 = 7 n without method = max 1 ply ecf but x must be an integer and less than 10	9	[1] [1] [1] [1] [1]

note: apply ecf but x must be an integer and less than 10

	Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – October/November 2011	0620	32
7	• •	is the distillate collected n 40–100 °C / in the stated range		[1] [1]
		$H_{18} + 25/2O_2 \rightarrow 8CO_2 + 9H_2O$ cept: double the above / 12.5 in front of oxygen		[2]
	not	sonous / toxic / damages health / brain / kidneys e: must relate to people :: just harmful		[1]
	not acc eth ane ign	romo 2 bromine atoms (per molecule) :: Br ₂ :ept: 2 bromide groups 2 carbon atoms (per molecule) e a C-C single bond / no C=C / group C _n H _{2n+1} / satur ore: any reference to alkanes	ated	[0]
	ant	hree correct [2] two correct only [1]		[2]
	(iv) pos	ition of bromine atom(s)		[1]
	(c) 0.104/0 n = 4	.026		[1] [1]
	oxides o (oxides accept: 2NO +	of nitrogen) change carbon monoxide into carbon di of nitrogen then become nitrogen of nitrogen) change hydrocarbons into carbon dioxid balanced equations for first two marks $2CO \rightarrow N_2 + 2CO_2$ and $2NO \rightarrow N_2 + O_2$ changes hydrocarbons into carbon dioxide and wate	de and water	[1] [1] [1] [2] [1]