MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version IGCSE – October/November 2010	Syllabus 0620	Paper 33
1	(a) to complete the outer shell (of oxygen) / full outer or valence shell / 8 (electrons shell / Noble gas structure / to complete outer shell / to complete the octet ignore reference to hydrogen atoms / reference to accepting / sharing or gaining electrons					
	(b)			ne) electron s electron s		[1]
	(c)	орр	osite	charges <u>attract</u> / electrostatic <u>attraction</u> / positive <u>at</u>	<u>tracts</u> negative /	+ and – <u>attract</u> [1]
	(d)			ons cannot move / flow / no free ions / ions in a lattic n ions can move / flow / mobile ions / ions free (to n		[1] [1]
						[Total: 5]
2	(a)	23p 23p 23p	200	e 28n e 28n e 27n		[1] [1] [1]
	(b)	(i)	con	tains) iron d with other element(s) / compounds / suitable nam n is absent = 0	ed element	[1] [1]
		(ii)	cars cred	steel / fridges / white goods / construction etc. l it any sensible suggestion e.g. roofing, nails, screw	vs, radiators	[1] [1]
			cutle surg	lless steel ery / chemical plant / jewellery / (kitchen) utensils / ical equipment / car exhausts etc. vanadium steel (this is in the question)	named kitchen u	[1] tensil / in cars / [1]
	(c)	(i)	V ₂ O ₂ VO ₂	3		[1] [1]
		(ii)		sodium hydroxide(aq) or other named alkali ammonia		[1]
			con	d vanadium(IV) oxide dissolves / reacts (to remove vanadium(III) oxide)		[1] [1]
						[Total: 12]

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper			
			IGCSE – October/November 2010	0620	33			
3	(a) (i)	silver, tin (cobalt and magnesium not possible to decide) for silver less reactive then tin = 1						
	(ii)	mag or	magnesium and cobalt <u>salt / compound / ions</u> or					
			alt and magnesium <u>salt / compound / ions</u>		[1]			
	(iii)		+ $2Ag^{+} \rightarrow Sn^{2+}$ + $2Ag$ pecies correct = 1 balancing = 1		[2]			
		Sn to Sn^{2+} oxidation (can be written separately or as a correct half-equation)						
	(b) no Mg		on $r \rightarrow MgO + H_2O$ accept multiples		[1] [1]			
	(c) (i)		ms <u>positive</u> ions / loses or gives electrons		[1]			
			trons move / flow from this electrode / enter the circ ative to positive (so it is negative)	uit / electrons flow	v from [1]			
	(ii)		er voltage of Zn/Cu cell than Sn/Cu cell					
		or zinc	is negative relative to tin (in the third cell)		[1]			
	(iii)		nesium / more reactive metal (must be named) instants anything above calcium in the reactivity series	ead of zinc				
		silve	er / less reactive metal (must be named) instead of c	copper				
		or use	(more) concentrated acid		[1]			
	(iv)	pola 0.6 \	rities correct that is Zn - and Sn + /		[1] [1]			
		0.0	v		[Total: 14]			
4	(a) (i)		n RHS		[1]			
		-	pre any other species on RHS of equation fully correct i.e. $2H^+ + 2e \rightarrow H_2$		[1]			
	(ii)		emoved / escapes / discharged / used up / reduced		[1]			
			ilibrium) moves to RHS / more water molecules ion ociate / forward reaction favoured	ise or	[1]			
	(iii)	oxyg not	gen / O ₂ O		[1]			
	(iv)	carb	on / graphite / platinum (electrode)		[1]			
	(b) (i)		nake ammonia / in petroleum processing / balloo lening of fats / fuel cells / fuel (unqualified) / making					
	(ii)	to st	erilise / disinfect it / kill bacteria / bugs / microbes / r	micro-organisms /				

	Pa	ge 4		Mark Scheme: Teachers' ve		Syllabus	Paper
				IGCSE – October/November	2010	0620	33
	(c)	(i)	(reference te	reference to) volume and time / how long it takes [1]			
		 (ii) carry out experiment with different intensities of light / one in light and or dark / repeat experiment in reduced light measure new rate which would be <u>faster or slower</u> depending on light in 			[1]		
							[Total: 11]
5	(a)	(i)		$_{3}COOH \rightarrow (CH_{3}COO)_{2}Mg + H$ ula of magnesium ethanoate ges	1 ₂		[1] [1]
			sodium etha	inoate + water			[1]
		(ii)	ethyl ethano displayed fo				[1] [1]
	(b)	(i)	add up to 5.	8 g			[1]
		(ii)	moles of H a	moles of C atoms = $2.4/12 = 0.2$ moles of H atoms = $0.2/1 = 0.2$ moles of O atoms = $3.2/16 = 0.2$			
			all three cor two correct				[2]
			empirical for				[1]
		(iii)	116/29 = 4 $C_4H_4O_4$ correct form	ula with no working scores bo	th marks.		[1] [1]
	(iv)		HOOCCH=	CHCOOH / CH2=C(COOH)2			[2]
							[Total: 13]
6	(a) (i)			two nitrogen atoms (can be ar on each nitrogen atom	ny combinatio	on of dots or cross	es) [1] [1]
		(ii)		SOLID	GAS		
			PATTERN	regular / lattice (not fixed)	random /	irregular / no patte	ern [1]
			DISTANCE	close	far apart /	spread out	[1]
			MOVEMEN	T vibrate / fixed / no motion	moving / t	ranslational	[1]
	(b)	(i)	•	olecules have more energy / er / collide more frequently / m		; / collide with more	[1] e force (with the [1]

Page	5	Mark Scheme: Teachers' version	Syllabus	Paper	
		IGCSE – October/November 2010	0620	33	
(ii)	 (ii) (1) nitrogen has smaller M_r / lighter molecules / lower density nitrogen <u>molecules</u> / <u>particles</u> move faster (than chlorine molecules) (2) at higher temperature nitrogen <u>molecules or particles</u> (not ator have more energy 				
				[Total: 10]	
7 (a) (i)	does	er / light / lightweight / lower density s not corrode / rust / oxidised pre cheaper / easier to mould		[1] [1]	
(ii)	line	lit any two sensible suggestions e.g. rope / clothing / / fishing nets / parachutes / tyres / tents / bottles hbrushes / cassettes / video tapes	U		
(iii)	land visu dang (bur HF / not	-biodegradeable / do not rot / do not decompose / pe fill sites limited / getting filled up al pollution ger to fish / animals n to form) toxic gases / harmful gases / pollutant ga / HCN oxides of nitrogen / sulfur three			
(b) (i)	acco not CH ₃	pene / propylene ept prop-1-ene prop-2-ene -CH=CH ₂ ble bond must be shown		[1]	
(ii)		ect repeat unit (one or more whole repeat units must d continuation	t be given)	[1] [1]	
(c) (i)	amio	de / peptide / polypeptide		[1]	
(ii)	prot	ein / polypeptide		[1]	
(iii)		(CH ₂) ₆ NH ₂ DC(CH ₂) ₈ COOH		[1]	
				[Total: 15]	

[Total: 15]