

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
*			
2 9	CHEMISTRY		0620/02
7	Paper 2		October/November 2009
3 9			1 hour 15 minutes
•			
7	Candidates ans	wer on the Question Paper.	
8 2	No Additional M	aterials are required.	
9			
V			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the periodic table is printed on page 20.

At the end of the examination, fasten all your work securely together.	For Exam	iner's Use
The number of marks is given in brackets [] at the end of each question or part question.	1	
	2	
	3	
	4	
	5	
	6	
	7	
	Total	

This document consists of 17 printed pages and 3 blank pages.

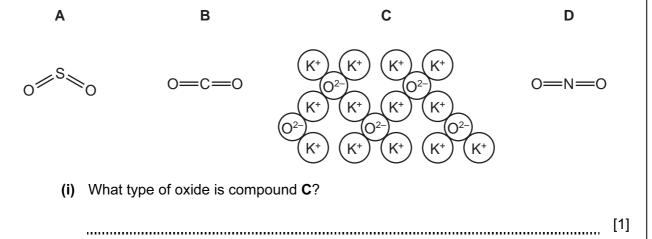
UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

1 The list shows some non-metallic elements.

bromine carbon fluorine krypton nitrogen oxygen

- (a) Which two elements in the list are in the same Group of the Periodic Table?
- and
 [1]

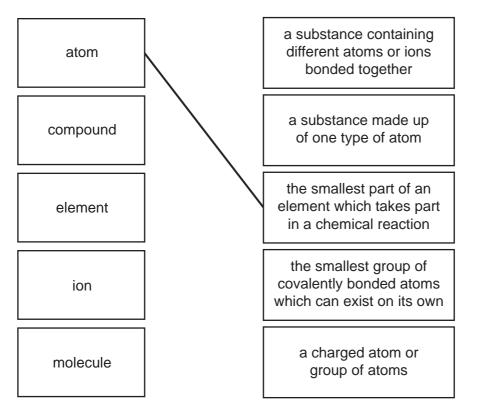

 (b) Which element in the list has the highest proton number?
 [1]

 (c) Which two of these elements make up most of the air?
 [1]
- (d) Bromine and fluorine form a compound with the formula BrF_5 . Calculate the relative molecular mass of BrF_5 .

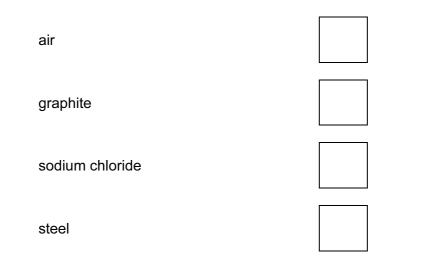
[1]

For Examiner's Use

(e) The diagram shows the structure of some compounds containing oxygen.


(ii) Compound A is an atmospheric pollutant. For Describe the source of compound A and state its effect on the environment. Examiner's Use Source _____ Effect on the environment [2] (iii) In the presence of air, compound **D** reacts with water to form nitric acid. A student used the apparatus below to add an aqueous solution of nitric acid to an aqueous solution of potassium hydroxide. He added the acid until it was in excess. burette solution of nitric acid flask solution of potassium hydroxide Describe how the pH of the solution in the flask changes as the nitric acid is added until the acid is in excess. [3] (iv) Describe how you can measure this pH change. [1] (v) The equation for the reaction is $KOH + HNO_3 \rightarrow KNO_3 + H_2O$ State the name of the salt formed in this reaction. [1] [Total: 12]

3


[Turn over www.theallpapers.com

2 (a) Link the terms in the boxes on the left with the definitions on the right. The first one has been done for you.

4

(b) Which **two** of the following are mixtures? Tick two boxes.

For Examiner's Use

[1]

[4]

(ii)	State a use for helium.		
		[1]
(iii)	Which one of these statements about helium is correct?		
	helium is in Period 2 of the Periodic Table		
	helium is a liquid at room temperature		
	helium is unreactive		
	helium has an incomplete outer shell of electrons		
		[1]
		[Total: 1	1]

3 A student used the apparatus shown to calculate the energy released when ethanol burns.

(a) Draw the structure of ethanol showing all atoms and bonds.

[1]

For Examiner's Use

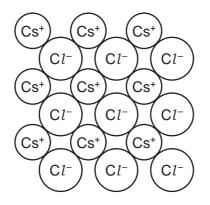
- (b) The energy released by the burning ethanol raises the temperature of the water in the copper calorimeter.
 - (i) Which one of these words best describes the energy change when ethanol burns? Put a ring around the correct answer.

	electrolytic	electronic	endothermic	exothermic	[1]
ii)	When 4.6g of ethano	l is burnt, 5.4 g of v	vater is formed.		

(ii) When 4.6g of ethanol is burnt, 5.4g of water is formed. Calculate the mass of water formed when 13.8g of ethanol is burnt.

C₂H₅OH	+ 30 ₂ →	for the combustion of e	H ₂ O	[1]	For Examiner's Use
(d) When c forms c hydroch (i) Des	o properties which o opper is left expose n its surface. T loric acid. CuCO ₃ (s) + 2HC <i>l</i> cribe two observatio	distinguish transition me ed to the air for some he equation shows f (aq) \rightarrow CuC $l_2(aq) +$ ons that can be made a	time, a coating o now copper cart CO ₂ (g) + H ₂ (s this reaction ha	[2] f copper carbonate bonate reacts with D(I) ppens.	
2. (ii) Stat (e) The calc	e the meaning of th	e symbol (aq).		[2]	
acids	addition	condensation	ethane	ethene	
	monomers		polymer		
		formed by the		thene molecules. [3] [Total: 12]	

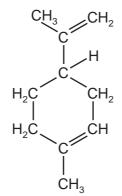
7


4	Cae	esium is a metal in Group I of the Periodic Table.	
	(a)	State two physical properties of caesium.	
			[2]
	(b)	State the number of electrons in the outer shell of a caesium atom.	
			[1]
	(c)	An isotope of caesium has a mass number of 133.	
		(i) What do you understand by the term <i>isotope</i> ?	
			[1]
		(ii) Calculate the number of neutrons in this isotope of caesium.	
			[1]

(d) Complete the following table to estimate the boiling point of caesium and predict the reactivity of caesium with water.

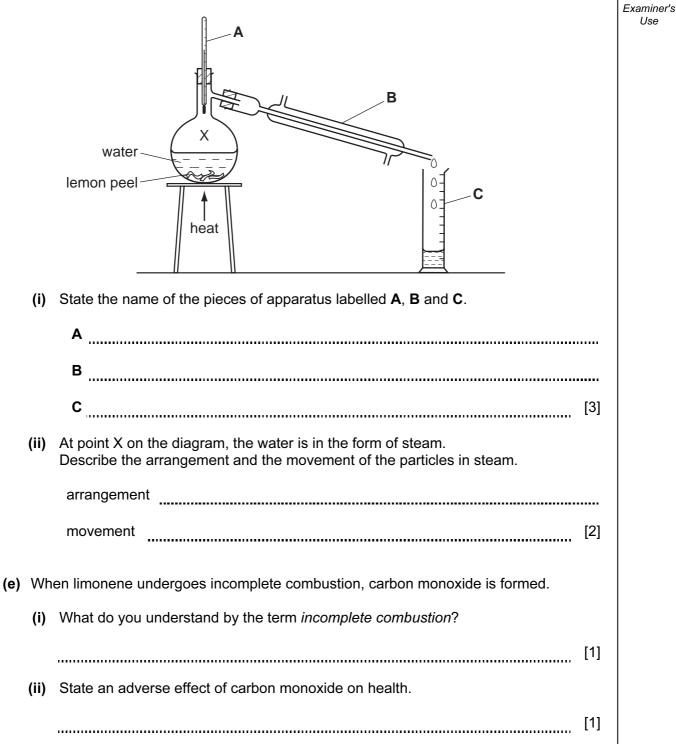
Group I metal	density/ g/cm ³	boiling point /°C	reactivity with water
sodium	0.97	883	fizzes quickly, disappears gradually and does not burst into flame
potassium	0.86	760	fizzes very quickly, disappears quickly and bursts into flame with a little spitting
rubidium	1.53	686	fizzes extremely quickly, bursts into flame then spits violently and may explode
caesium	1.88		

[2]

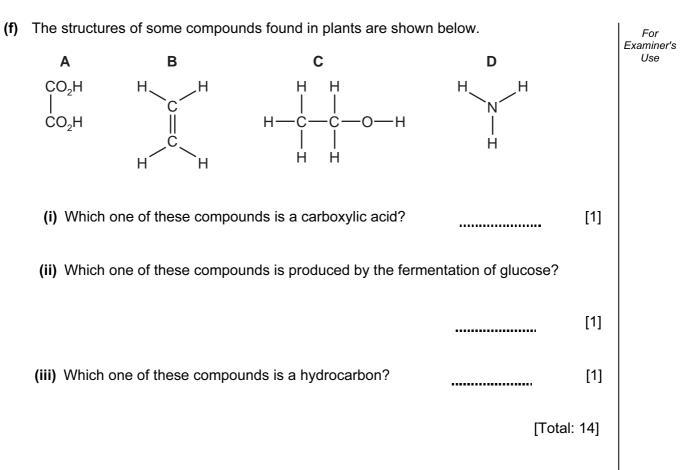

(e) The diagram shows the structure of caesium chloride.

Use this diagram to work out the simplest formula for caesium chloride.

		[1]
(f)	Caesium chloride dissolves in water to form a neutral solution. State the pH of a neutral solution.	[4]
		[1]
(g)	Describe a test for chloride ions.	
	test	
	result	
		[2]
	[Total:	11]


5 Limonene is a colourless unsaturated hydrocarbon found in lemons. The structure of limonene is shown below.

(a) On the formula above, draw a circle around the bonds which make limonene an unsaturated compound. [1]
(b) Write the molecular formula for a molecule of limonene. [1]
(c) Describe the colour change which occurs when excess limonene is added to a few drops of bromine water. [2]


10

(d) Limonene can be extracted from lemon peel by steam distillation.

For

Use

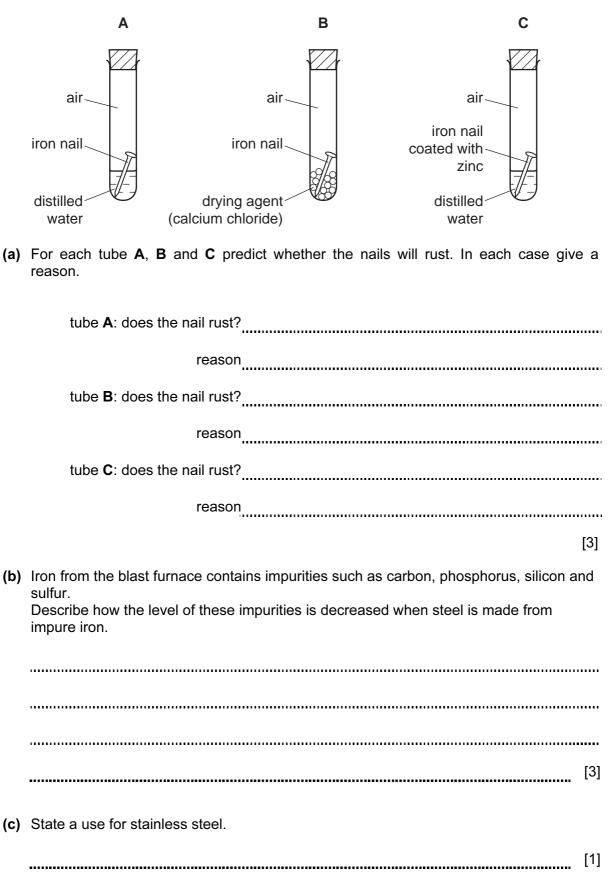
AIU	minium is extracted by the electrolysis of aluminium oxide.	Exan
	B C C D D D D D D D D D D D D D	
(a)	Hydrated aluminium oxide is heated to produce pure aluminium oxide.	
	$Al_2O_3.3H_2O \rightarrow Al_2O_3 + 3H_2O$ hydrated aluminium oxide	
	What type of reaction is this? Put a ring around the correct answer.	
	decompositon neutralisation oxidation reduction	
	[1]	
(b)		
	[1]	
(c)	What is the purpose of the cryolite?	
	[1]	
(d)	Which letter in the diagram, A, B, C or D, represents the cathode?	
	[1]	
(e)	State the name of the products formed at the anode and cathode during this electrolysis.	
	anode	
	cathode[2]	
(n	Why do the anodes have to be renewed periodically?	
(f)		
(†)		

13

(g) Complete the equation for the formation of aluminium from aluminium ions.

$$Al^{3+}$$
 + $e^{-} \rightarrow Al$

(h) State one use of aluminium.


[Total: 10]

For Examiner's Use

[1]

[1]

7 The diagram shows an experiment to investigate the rusting of some iron nails.

(d) Pure iron can be prepared by the reduction of iron(II) oxide, FeO.

FeO + H_2 \rightarrow Fe + H_2O

Explain how this equation shows that the iron(II) oxide has been reduced.

[1]

(e) Iron(II) oxide reacts with acids.

 $FeO + 2HCl \rightarrow FeCl_2 + H_2O$

Write a word equation for this reaction.

[2]

[Total: 10]

BLANK PAGE

BLANK PAGE

www.theallpapers.com

BLANK PAGE

	0	2 Helium 4	20 Neon 10 Argon 18 Argon	84 Kr Krypton 36	131 Xenon 54	Radon 86	175 Lut Lutetium 71 Lawrencium 103
	II>		9 Fluorine 35.5 335.5 Anotine	80 Br ³⁵ Bromine		Astatine 85	70 Nobelium 173 70 Nobelium
	7		16 8 ^{Oxygen} 32 32 ^{Sultur} 16	79 Se Selenium 34	128 Tellurium 52	Polonium 84	169 Thulium 69 Md Mendelevium 101
	>		Nitrogen 31 31 31 15	75 AS Arsenic 33	122 Sb 51 209 D:	Bismuth 83	167 Erbium 68 Fm Fermium 100
	≥		12 6 Carbon 6 28 28 14 14 81icon	73 Ge Germanium 32	50 Tin 207	82 Lead	165 Holmium 67 Einsteinium 99
	=		11 5 Boron 27 27 Auminium 13	70 Gal ium 31	115 Indium 204	Thallium 81	162 Dysprosium 66 Californium 98
2				65 Zn Zinc 30	112 Cadmium 48 201	Mercury 80	159 Tarbium 65 Berkelium 97
Group				64 Copper 29	108 Ag 8ilver 197	Gold 79	157 Gadolinium 64 CM CM
Group				59 Nickel 28	106 Palladium 46 195	Platinum 78	152 Eu 63 Americium 95
Gr Gr	อั			59 Co 27	103 Rh odium 192	Itidium 77	150 Samarium 62 Plutonium 94
>		¹ Hydrogen		56 Fe Iron 26	101 Ruthenium 44 190	Osmium 76	Prometrium 61 Neptunium 93
				55 Manganese 25	Hackhnetium 186	Rhenium 75	144 144 Neodymium 60 238 238 238 0 Uranium
				52 Cr Chromium 24	96 Molybdenum 42 184	Tungsten 74	141 Praseodymium 59 Pa Protactinium 91
				51 Vanadium 23	93 181 181 181	Tantalum 73	140 Cerium 58 232 232 232 Thorium 90
				48 T ^{Titanium} 22	91 Zriconium 40 178	⁴	nic mass bol nic) number
		-		45 Scandium 21	39 ^{Ytt trium} 39	Lanthanum 57 * * 227 AC Actinium	*58-71 Lanthanoid series 190-103 Actinoid series 190-103 Actinoid series a = relative atomic mass Key b b = proton (atomic) number
			9 Beryllium 24 Magnesium	40 Calcium	_	Barium 226 Rađium	*58-71 Lanthanoid serie 190-103 Actinoid series a = relativ Key b = proton
	=		4 12 ME	20 0	38	88 26 -	Act ant

20

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.