UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2009	0620	31

GENERAL INSTRUCTIONS FOR MARKING

- Error carried forward may be allowed in calculations. This will be discussed in the mark scheme. This is not applied when the candidate has inserted incorrect integers or when the answer is physically impossible.
- COND the award of this/these mark(s) is conditional upon a previous mark being awarded.
 Example Is the reaction exothermic or endothermic? Give a reason for your choice.
 Mark scheme exothermic [1]
 - **COND** a correct reason given [1]. This mark can only be awarded if the candidate has recognised that the reaction is exothermic.
- When the name of a chemical is demanded by the question, a **correct** formula is usually acceptable. When the formula is asked for, the name is not acceptable.
- When a word equation is required a **correct** symbol equation is usually acceptable. If an equation is requested then a word equation is not usually acceptable.
- An incorrectly written symbol, e.g. NA **or** CL, should be penalised once in a question.
- In the mark scheme if a word **or** phrase is underlined it (**or** an equivalent) is required for the award of the mark.
 - (.....) is used to denote material that is not specifically required.
- OR designates alternative and independent ways of gaining the marks for the question.
 or indicates different ways of gaining the same mark.
- Unusual responses which include correct Chemistry which answer the question should always be rewarded even if they are not mentioned in the marking scheme.

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper 31	
			IGCSE – October/November 2009 0620				
1	(a)	(a) (i) argon or krypton or helium Accept xenon and radon even though percentages are very small NOT hydrogen					
		(ii)	wate	er and carbon dioxide		[2]	
	(b)	(i)		rr dioxide or lead compounds or CFCs or methane or nburnt hydrocarbons or ozone etc.	particulates	[1]	
		(ii) <u>incomplete combustion</u> of a fossil fuel or a named fuel or a fuel that contains carbon				[1] [1]	
	(iii)		gh temperature or inside engine gen and oxygen (from the air) react		[1] [1]	
	(iv)		anges carbon monoxide to carbon dioxide es of nitrogen to nitrogen		[1] [1]	
				symbol or word equation of the type: $0 + 2CO \rightarrow CO_2 + N_2$		[2]	
			diox	a redox explanation – the oxides of nitrogen oxidiscide, are reduced to nitrogen	e carbon monox	ide to carbon [1] [1]	
				$2NO \rightarrow N_2 + O_2$ $2CO + O_2 \rightarrow 2CO_2$		[1] [1]	
						[Total: 10]	
2		pH < 7 example		[1] [1]			
		pH > 7 example NOT amphoteric oxides Be, A <i>l</i> , Zn, Pb, Sn etc			[1] [1]		
		exa the	two r	H_2O , CO , NO narks are not linked, mark each independently photeric oxides Be, Al , Zn , Pb , Sn etc.		[1] [1]	
	(b)	(i)	shov	vs both basic and acidic properties		[1]	
		(ii)		med strong acid med alkali		[1] [1]	

[Total: 9]

			IGCSE – October/Novembe	r 2009 0620	31		
3	(a) (i) heat or roast or burn <u>in air</u> need both points for mark				[1]		
		(ii)	$ZnO + C \rightarrow Zn + CO$ or $2ZnO + C \rightarrow 2Zn + CO_2$ unbalanced ONLY [1]		[2]		
	(b)	it lo zind	is more reactive ses electrons and forms ions in preference corrodes not iron rzinc rusts	to iron	[1] [1] [1]		
		OR zinc loses electrons and forms ions the electrons move on to the iron the iron cannot be oxidised or it cannot rust or it cannot lose electrons CREDIT correct Chemistry that includes the above ideas					
	(c)	(i)	zinc atoms change into ions, (the zinc dissecopper(II) ions change into atoms, (become		[1] [1]		
		(ii)	ions electrons		[1] [1]		
					[Total: 10]		
4	(a)	a) diffusion different M_r or ozone molecules heavier than oxygen molecules or different densities or oxygen molecules move faster than ozone molecules		[1] [1]			
		NOT oxygen is lighter or ozone heavier OR fractional distillation they have different boiling points			[1] [1]		
	(b)	(i)	from colourless (solution) to brown (solution)		[1] [1]		
		(ii)	${\rm I^-}$ loses electrons (to form iodine molecules must be in terms of electron transfer NOT of		[1]		
			they (electrons) are accepted by ozone or it is an electron acceptor		[1]		

Syllabus

Paper

Page 4

	ra	ge ၁		wark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – October/November 2009	0620	31
((c)	(i)	CON 2bp	ect structural skeleton ID 4bp around both carbon atoms and 2nbp around sulfur atom E marks 2 and 3 can only be awarded if mark 1 has b	een scored	[1] [1] [1]
		(ii)	sulfu all th any	on dioxide ır dioxide		[2]
						[Total: 11]
5 ((a)	(i)	hard light high Acce it inc	<u> </u>		[3]
		(ii)	silico			
		(11)	four	л		[1] [1]
((b)	diagram to include: each germanium atom bonded 4 oxygen atoms each oxygen to 2 germanium atoms looks or stated to be tetrahedral "tetrahedral" scores mark even if diagram does not look tetrahedral independent marking of three points		[1] [1] [1]		
((c)	(i)	struc	ctural formula of Ge₄H₁₀ all bonds shown		[1]
		(ii)	gern wate	nanium(IV) oxide er		[1] [1]
						[Total: 11]

Syllabus

Paper

Page 5

r age o	Walk Scheme. Teachers Version	Syllabus	raper			
	IGCSE – October/November 2009	0620	31			
	n sulfur in air or oxygen eat a metal sulfide in air		[1]			
` or n	bleach for wood pulp/cloth/straw or preserve food or sterilising or making wine or fumigant or refrigerant Accept making paper					
or v	vanadium(V) oxide accept vanadium oxide or V_2O_5 or vanadium pentoxide oxidation state not essential but if given it has to be (V)					
(iv) rate	too slow or rate not economic		[1]			
(v) read	ction too violent or forms a mist		[1]			
	water to yellow powder or to anhydrous salt ould go green		[1] [1]			
	nge from purple or pink plourless NOT clear		[1] [1]			
(iii) read	ets with <u>oxygen</u> in air		[1]			
number mass of mass of number volume of If mass of	number of moles of FeSO $_4$ used = 9.12/152 = 0.06 number of moles of Fe $_2$ O $_3$ formed = 0.03* mass of one mole of Fe $_2$ O $_3$ = 160 g mass of iron(III) oxide formed = 0.03 × 160 = 4.8 g number of moles of SO $_3$ formed = 0.03 volume of sulfur trioxide formed = 0.03 × 24 = 0.72 dm 3 If mass of iron(III) oxide greater than 9.12 g, then only marks 1 and 2 available Apply ecf to number of moles of Fe $_2$ O $_3$ * when calculating volume of sulfur trioxide. Do not apply ecf to integers					

Syllabus

Paper

Page 6

6

[Total: 16]

				IGCSE – October/November 2009	0620	31	
7	(a)	(i)	heat cata				[1] [1]
		(ii)	alke	quation that gives: ne + alkane			[4]
			ora	lkene + alkene + hydrogen			[1]
			a co	rrect and balanced equation for the cracking of decane,	C ₁₀ H ₂₂ but not b	out-1-ene	[1]
		(iii)	wate	er or steam			[1]
	(b)	(i)		$_{3}OH + 6O_{2} \rightarrow 4CO_{2} + 5H_{2}O$ ly error is balancing the oxygen atoms			[2] [1]
		(ii)		nol + methanoic acid → butyl methanoate + water ect products or reactants ONLY			[2] [1]
	(c)	(i)	acce pena	ect structural formulae [1] each ept either propanol and –OH in alcohol and acid alise once for CH ₃ type diagrams either C ₃ H ₈ O or C ₃ H ₆ O ₂ [0]			[2]
		(ii)	to co	onserve petroleum or reduce greenhouse effect			[1]
	(d)	hav	/e sar	ne boiling point			[1]

Syllabus

Paper

[Total: 13]

Page 7