

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/02
Paper 2		Octo	ber/November 2008
			1 hour 15 minutes
Candidates answer	on the Question Paper.		
No Additional Materi	als are required		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the periodic table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
1				
2				
3				
4				
5				
6				
7				
Total				

This document consists of 16 printed pages.

1 (a) The table gives some information about five elements, A, B, C, D and E. Complete the table by writing either metal or non-metal in the last column.

For Examiner's Use

element	properties	metal or non-metal
Α	shiny solid which conducts electricity	
В	reddish brown liquid with a low boiling point	
С	a form of carbon which is black in colour and conducts electricity	
D	white solid which is an insulator and has a high melting point	
Е	dull yellow solid which does not conduct heat	

5	1	
J	4	
_	J	

(b)	Describe ho	ow metallic	character	changes	across	a Period.
-----	-------------	-------------	-----------	---------	--------	-----------

[1]

(c) Sodium is in Group I of the Periodic Table.

(i) Draw a diagram to show the full electronic structure of sodium.

[1]

(ii) Complete the equation to show what happens when a sodium atom forms a sodium ion.

(d) Complete from the		nces about t	he properties of th	ne Group I e	lements using words
acidic	basic		decrease	h	ard
incr	ease	lithium	pot	assium	soft
The Group I ele	ements are relativ	/ely	meta	als which	in
reactivity going	down the Group	. Sodium rea	cts more violently	with water tha	an
The Group I me	etals all form		oxides.		[4]
					[Total: 12]

For Examiner's Use **2 (a)** Match up the atmospheric pollutants on the left with their main source on the right. The first one has been done for you.

For Examiner's Use

[3]

(b) One stage in the manufacture of sulphuric acid involves the oxidation of sulphur dioxide by oxygen in the air to form sulphur trioxide.

$$2SO_2 + O_2 \longrightarrow 2SO_3$$

(i) Explain how this reaction shows that sulphur dioxide is oxidized.

[1]

(ii) What is the percentage of oxygen in clean air? [1]

(iii) Sulphuric acid is used to make the fertiliser ammonium sulphate.

ammonia + sulphuric acid → ammonium sulphate

What type of reaction is this?

[1]

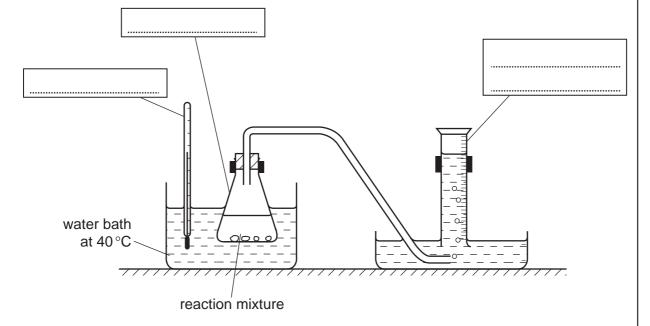
(iv)	Why do farmers need to use fertilisers?		For Examiner's Use
		[2]	
(v)	Another fertiliser can be made by the reaction of ammonia with nitric acid. State the chemical name of this fertiliser.		
		[1]	
	lTota	l: 91	

3 Calcium carbonate, CaCO₃, is the raw material used in the manufacture of lime, CaO.

For Examiner's Use

(a) (i) Describe how lime is manufactured from calcium carbonate.

[1]


(ii) Write a symbol equation for this reaction.

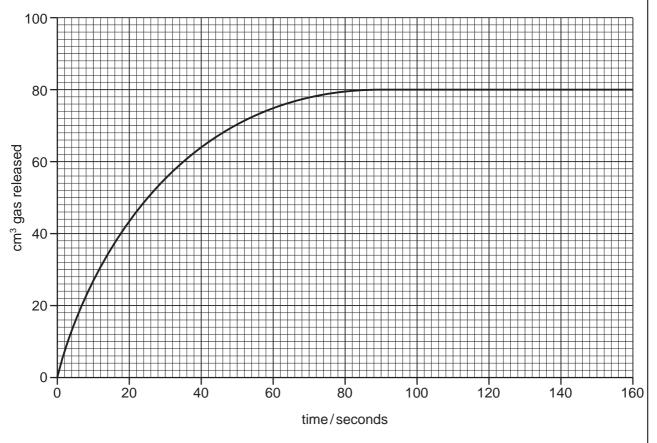
[1]

(iii) State one large scale use of lime.

[1]

- **(b)** A student investigated the speed of reaction of calcium carbonate with hydrochloric acid using the apparatus shown below.
 - (i) Complete the labelling of the apparatus by filling in the three boxes. [3]

(ii) The equation for the reaction is


$$CaCO_3 + 2HCl \longrightarrow CaCl_2 + CO_2 + H_2O$$

Write the word equation for this reaction.

[2]

(iii) The student carried out the reaction at 40°C using large pieces of calcium carbonate. The results of the experiment are shown below.

For Examiner's Use

At what time did the reaction stop?

ſ1	1
 г.	4

- (iv) The student repeated the experiment using the same mass of powdered calcium carbonate. All other conditions were kept the same. On the grid above, sketch the graph for the reaction with calcium carbonate powder. [2]
- (v) How does the speed of reaction change when

the concentration of hydrochloric acid is decreased,

the temperature is increased? [2]

[Total: 13]

		8	
4	Iron is e	extracted from its ore in a blast furnace.	
	(a) Stat	te the name of the ore from which iron is extracted.	
	•••••		[1]
	(b) The	e diagram shows a blast furnace.	
		coke + limestone + iron ore B air in C D	
	(i)	Which one of the raw materials is added to the blast furnace to help remove the impurities from the iron ore?	
			[1]
	(ii)	The impurities are removed as a slag. Which letter on the diagram shows the sla	ag?
			[1]

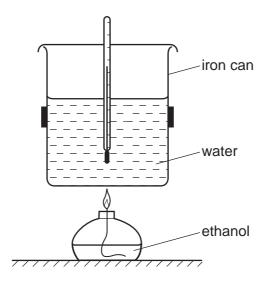
(c) Carbon monoxide is formed in the blast furnace by reaction of coke with oxygen.

(ii) State the adverse affect of carbon monoxide on human health.

(i) Complete the equation for this reaction.

.....C +

For Examiner's Use


[2]

[1]

(d)	In t	ne hottest regions of the blast furnace the follow	ing reaction takes place.	For Examiner's		
		$Fe_2O_3 + 3C \longrightarrow 2Fe$	+ 3CO	Use		
		ch two of these sentences correctly describe thing two boxes.	s reaction?			
	The	iron oxide gets reduced.				
	The	reaction is a thermal decomposition.				
	The	carbon gets oxidised.				
	The	carbon gets reduced.				
	Car	bon neutralises the iron oxide.		1]		
(e)		minium cannot be extracted from aluminium oxid				
		idin wity didininidin odimot be extracted in this v	vay.			
				2]		
(f)	(i)	State the name of the method used to extract a	luminium from its oxide ore.			
	[1]					
	(ii)	State one use of aluminium.				
				[1]		
			[Total: 1	1]		

5 The apparatus shown below can be used to measure the energy released when a liquid fuel is burnt. The amount of energy released is calculated from the increase in temperature of a known amount of water.

For Examiner's Use

(a)	(i)	Explain reaction	this	experiment	shows	that	the	burning	of	ethanol	is	an	exotherm	nic
													1	[1]

(ii)	Complete the word equat	on for the complete combustion of ethanol.	
	ethanol + oxygen →	+	[2]

(D)	Ethanol is a fuel containing carbon. State the names of two other commonly used fuels containing carbon.	
	and	[2]

[1]
 Γ.1

(c) Give the formula of the functional group present in ethanol.

(d)	The can contains water. Describe a chemical test for water.	
	test	
	result	[2]

(e)	The	e iron can used in this experiment rusts easily.	Foi
	(i)	Describe a method which can be used to prevent iron from rusting.	Examir Use
		[1]	
	(ii)	Rust contains hydrated iron(III) oxide. What do you understand by the term <i>hydrated</i> ?	
		[1]	
	(iii)	Iron is a transition metal. State two properties which are typical of transition metals.	
		[2]	
		[Total: 12]	

iner's

6 The compound shown below is the first member of the alkane homologous series.

For
Examiner's
Use

(a)	State two	characteristics	of a	homologous	s series

		[2]

(b) Name and draw the structure of the next member of the alkane homologous ser	ries.
---	-------

name	

structure

[2]

(c) Complete the table to show the structure and uses of some organic compounds.

name of compound	molecular formula	structure (showing all atoms and bonds)	use
ethene	C₂H₄		
ethanoic acid	C ₂ H ₄ O ₂		making esters
dibromoethane		Br Br H—C—C—H H H	
	CH₄	H H—C—H H	

[6]

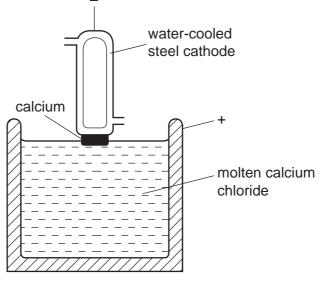
(d) Calculate the relative molecular mass of dibromoethane.

For Examiner's Use

[1]

[Total: 11]

7 The diagram shows the structures of calcium chloride, calcium and chlorine.


For Examiner's Use

[2]

Cl-	$ \begin{array}{c c} \hline Cl^{-} & Cl^{-} & Cl^{-} \\ \hline Ca^{2+} & Ca^{2+} \\ \hline Cl^{-} & Cl^{-} & Cl^{-} \\ \hline Ca^{2+} & Ca^{2+} \\ \hline \end{array} $	Ca) Ca) Ca) Ca) Ca) Ca) Ca) Ca) Ca)	$\begin{array}{c} Cl \\ \end{array}$
С	alcium chloride	calcium	chlorine
(a) Us	e ideas about structure and	bonding to explain the follow	ving:
(i)	Calcium chloride conducts	electricity when molten but	not when solid.
			[2]
(ii)	At room temperature, calc	um is a solid but chlorine is	a gas.

(b) Calcium is manufactured by the electrolysis of molten calcium chloride.

	(i)	State the products formed	
		at the anode,	
		at the cathode.	[2]
	(ii)	Suggest a non-metal that can be used as an anode in this electrolysis.	
			[1]
	(iii)	A stream of inert gas is blown over the calcium as it is removed from the mol calcium chloride. Suggest why a stream of inert gas is blown over the hot calcium.	ten
	(iv)	State the name of a gas which is inert.	[1]
	(,		[1]
(c)	soli De:	ueous sodium hydroxide or aqueous ammonia can be used to test for calcium ions ution. scribe the results of these tests	
	wit	h aqueous sodium hydroxide,	
			[2]
	wit	h aqueous ammonia.	•••
			[1]
		ITotal: 1	121

DATA SHEET
The Periodic Table of the Elements

0	4 H Helium	20 Neon 10	40 Ar Argon	84 Krypton	36	Xenon Xenon 54	Rn Radon		175 Lu Lutetium 71	Lr Lawrencium 103
		19 Fluorine	35.5 C1 Chlorine	80 Bromine	35	I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium
>		16 Oxygen 8	32 S Sulphur	Selenium	128	Tellurium	Polonium 84		169 Tm Thulium 69	Mendelevium 101
>		14 N itrogen 7	31 Phosphorus 15	75 AS Arsenic	33	Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fm Fermium
≥		12 Carbon 6	28 Si Silicon	73 Ge Germanium	119	S 0	207 Pb Lead		165 Ho Holmium 67	Es Einsteinium
=		11 Boron 5	27 A1 Aluminium 13	Gallium	31	In Indium	204 T t Thallium		162 Dy Dysprosium 66	Californium
				65 Zn Zinc	30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Copper	108	Ag Siver 47	197 Au Gold		157 Gd Gadolinium 64	Carium Ourium
Group				S9 Nickel	106	Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
້ອ				So Cobalt	103	Rh Rhodium 45	192 Ir Iridium		Sm Samarium 62	Pu Plutonium 94
	Hydrogen			56 From Page 1	101	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium
				Manganese	52	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 U Uranium 92
				52 Chromium	24	Molybdenum 42	184 W Tungsten 74		Pr Pr Praseodymium 59	Pa Protactinium 91
				51 Vanadium	23	Niobium 41	181 Ta Tantalum 73		140 Ce Cerium	232 Th Thorium
				48 Ttanium	91	Zr Zirconium 40	178 Hf Hafnium 72			nic mass bol nic) number
				Scandium	21	→ Yttrium	139 La Lanthanum 57 *	227 Ac Actinium †	d series series	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
=		Beryllium	Mg Magnesium	40 Calcium	20	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	« × °
_		7 Li Lithium	Na Sodium	39 K	85	Rb Rubidium 37	133 Caesium 55	Fr Francium 87	*58-71 L	Key o

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).