UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2007 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme		Syllabus	Paper	
				IGCSE – (October/Nov	rember 2007	0620	03
1	diffusion or fractional distillation crystallisation fractional distillation filtration NOTE As the candidate are selecting from a list, the above are the only acceptable							[1] [1] [1] [1] ceptable [Total: 5]
2	(a)	²³ ₁₁	la					[1]
		40 ₁₈	Ar					[1]
		³¹ ₁₅	o ³⁻ [1] for ch	arge and [1	l] for symbol	etc.		[2]
	$^{27}_{13}$ A l^{3+} [1] for charge and [1] for symbol etc.						[2]	
	ACCEPT +3 and –3 NOTE Only the above are to be awarded the mark							
	(b)) particle B or ²³ ₁₁ Na or sodium					[1]	
			COND they have the same proton number or the same number of protons or the same atomic number			[1]		
				same number of electrons ame number of electrons and protons				
								[Total: 8]
3	(a)		ect ratio Mg	, – .	•			[1]
Accept anywhere in space IF formula suggests covalency then [1] only for MgBr ₂ or Mg 2Br								
correct charges Mg ²⁺ and Br ⁻ Do not be concerned about location				minus sian		[1]		
	8e around bromine NOTE do not require correct coding – just 7 and 1 coded differently						[1]	
	NOTE ignore electrons around magnesium							
	(ii) <i>A</i>					at or alternate		[1]
			NOTE Acce	ND positive and negative <u>ions</u> or atoms or molecule: TE Accept a sketch that shows the above, that is pair, e.g. any ionic compound such as sodium chloride				
			Any reason charges mu					[1]
			or based or or group II	n valencies				
			or 2e in out	ter level an	d 7e in outer		electron (per atom)	
	(iii)		_	ucing or reduction or reductant electrons or given or donated electrons or transfer		erred (to bromine)	[1] [1]	
			reduced gained or a	•		o.ou ono o r transit		[1] [1]
			عد و الم	optou on	- 3 5110			[Total: 10]

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2007	0620	03

4 (a) (i) bleach for wood pulp or preserving food or sterilising or in wine making or as a refrigerant or in metallurgy or (liquid) sulphur dioxide is used in the petroleum industry or kill microbes(etc) or insecticide

[1]

(ii) (react with) oxygen **or** air **NOT** burnt/burn in air/oxygen 450°C [1]

vanadium oxide catalyst (if oxidation state given has to be correct) **or** platinum If four conditions are given which include high pressure then **MAX** [2] High pressure is incorrect **MAX** 10 atm.

[1] [1]

(iii) ammonium sulphate **or** superphosphate **or** potassium sulphate **or** magnesium sulphate

[1]

(b) (i) vaporisation or boiling or evaporation condensation or liquefaction

[1] [1]

NOTE order in which changes are given is not important
NOT liquid => gas => liquid

(ii) to get maximum yield of zinc or reduce all zinc oxide

[1]

NOTE the above mark is awarded for why add excess carbon moves equilibrium to right **or** to favours the products **or** removes CO₂ from equilibrium

[1]

[2]

NOTE this mark is awarded for how does the addition of excess carbon give max yield of zinc

NOTE Allow any coherent explanation <u>flexibly</u> based on the above ideas **EXAMPLES**:

moves equilibrium to right [1] because carbon dioxide removed [1] to get maximum yield of zinc [1] as equilibrium moves to right [1] **NOT** just to make CO from CO₂

(c) (i) $Zn^{2+} + 2e = Zn$ [1]

(ii) $4OH^{-} - 4e = O_{2} + 2H_{2}O$ or $4OH^{-} = O_{2} + 2H_{2}O + 4e$ or $2H_{2}O = 4H^{+} + O_{2} + 4e$ or $2H_{2}O - 4e = 4H^{+} + O_{2}$ oxygen as product [1]

(iii) sulphuric acid

NOTE there are no alternative answers to the above

(d) prevent iron from rusting NOT with galvanising or sacrificial protection making brass or making alloys NOT bronze electroplating or as an electrode in electrolysis cells roofing sacrificial protection coinage

TWO uses

[2]

[Total: 15]

Page 4		1	Mark Scheme	Syllabus	Paper
			IGCSE – October/November 2007	0620	03
5	(a) (i)		librium to left or many molecules and few ions or ally ionised or reverse reaction favoured		[1]
	(ii)	meth	er donates <u>proton</u> nylamine accepts a proton E If hydrogen ion then ONLY [1] provided both are o	correct	[1] [1]
	(b) less sm poo NO	[1] [1]			
	 (c) (i) CH₃NH₂ + HC<i>l</i> = CH₃NH₃C<i>l</i> methylammonium chloride NOTE the equation must be as written, the equation with sul given as guidance. 			th sulphuric acid h	[1] [1] as been
	(ii)		vn precipitate CEPT orange or red/brown or brick red or brown/red		[1]
	(iii)	sodi	um hydroxide or any <u>named</u> strong base		[1] [Total: 9]
6	(a) (i)	heat	(energy)		[1]
	(ii)	exot	hermic		[1]
	(iii)		$_{5}OH + 3O_{2} = 2CO_{2} + 3H_{2}O$ $CO_{2} + H_{2}O$ ONLY [1]		[2]
	(iv)	strai betw	ing points correctly ght line reen –2640 and –2700kJ/mol E minus sign needed		[1] [1] [1]
	(v)	sam cons simil	eral (molecular) formula e functional group secutive members differ by CH ₂ lar chemical properties or react same way		
			a comment about physical properties TWO		[2]
	(b)		- CH(OH)-CH₃ - C₃H ₇ OH		[1]
		prop NOT acce acce	ean-2-ol "2" is needed E the name and the formula must correspond for book to tructural formula – all bonds shown correctly to the community of the ether CH ₃ - CH(HO)-CH ₃		[1]

		IGCSE – October/November 2	2007	0620	03
(c) (i)	heat (alkane) or (alkane) and catalyst thermal cracking or catalytic cracking e = alkene + hydrogen	g [2]		[2]
	CH ₄ + or wa	team reforming - H ₂ O = CO + 3H ₂ tter/steam vst or heat	[2] [1] [1]		
(ii)	incom	ustion or burning nplete or insufficient oxygen/air CCEPT steam reforming as above	[2]		[1] [1]
(iii)	or vol	oressure Oressure Item forward reaction volume decrease lume of reactants greater than that of over moles of gas on the right	products		[1]
		ver gas molecules on right E accept correct arguments about either	er reactants	or products	[1]
(d) (i)	methy	/l ethanoate			[1]
(ii)	propa	noic acid or propanal			[1]
(iii)	ethen	е			[1] [Total: 20]
(a) (i)	ACCE	<u>concentration</u> EPT without reference to experiment 2 gher concentration must be referred to			[1]
		fewer collisions or lower rate of colli			[1]
(ii)		ered so <u>larger surface area</u> D so more collisions or higher rate of o	collisions		[1] [1]
(iii)	or mo	r temperature particles move faster ore particles have enough energy to re ore particles have Ea O collide more frequently ore particles have energy to react	eact or have	more energy	[1]
	or mo	ore particles have energy to reaction erection are collisions result in a reaction are for conformity faster collisions = rate	of collisions		[1]

Page 5

7

Syllabus

Paper

Page 6		Mark Scheme	Syllabus	Paper
		IGCSE – October/November 2007	0620	03
(b) (i)	from grad there		[1] [1]	
(ii)	mase num mole reag ecf f		[1] [1] [1]	
	woul or hy NOT	aCO₃ itio	[1]	
(iii)	mole NOT	k ecf to (ii) , that is from moles of limiting reagent in es of $CO_2 = 0.005 \times 0.5 \times 24 = 0.06 \text{ dm}^3$ cm ³ unless numerically correct. 60 cm ³ are other units	(ii)	[1]
	ЙОТ	[Total: 13]		