Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2 (Core)

October/November 2005

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
Total		

This document consists of **16** printed pages.

1 The diagram shows part of the Periodic Table.

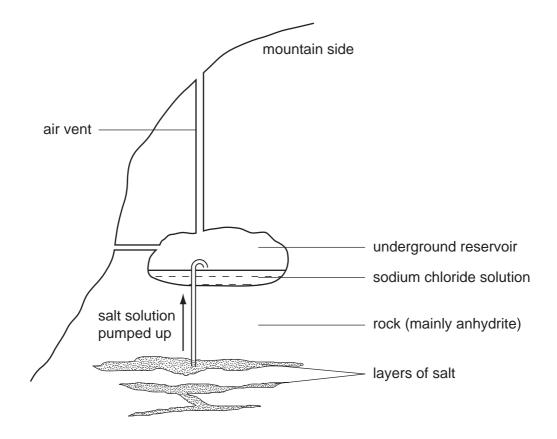
				He
С	N	0	F	Ne
		S	Cl	Ar
			Br	Kr

۱۵۱	Answer these	augotiona	unina	anly	tha	alamanta	ahawa	in tha	diaaram
laı	Allswei tilese	uuesiions	usina	OHIV	uie	elements	SHOWH	ını me	: ulaurarri

Write down the symbol for an element which

(i)	has five electrons in its outer shell,		[1]
(ii)	has diatomic molecules,		[1]
(iii)	reacts with sodium to form sodium bromide,		[1]
(iv)	is a noble gas,		[1]
(v)	has a giant covalent structure,		[1]
(vi)	has a lower proton number than fluorine,		[1]
vii)	is the most abundant gas in the air.		[1]
Wri	te down a use for each of the following eleme	nts.	
(ii)	helium		[1]
			[1]

(b)


(iii) oxygen

[1]

[1]

(c)	(i)	Draw a diagram to show the electronic structure of argon.			
			2]		
	(ii)	Why is argon very unreactive?			

2 The diagram shows the salt mines at Bex in Switzerland.

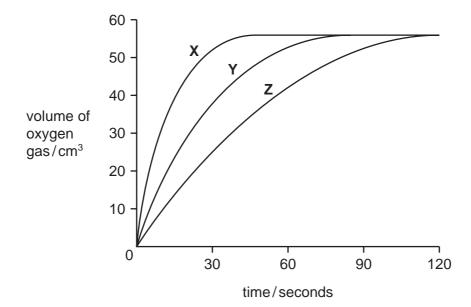
The salt is dissolved by water from underground springs and then pumped up to a reservoir where it is stored as a solution.

(a)	Write the chemical formula for sodium chloride.	
		[1]
(b)	Suggest how solid sodium chloride is obtained from the sodium chloride solution.	
		[1]

(c)	Wh	Sodium chloride has an ionic giant structure. Which one of the following best describes an aqueous solution of sodium chloride? Tick one box.					
	a m	ixture of sodium ions and chlorine molecules in water					
	a m	ixture of sodium and chlorine atoms in water					
	a m	a mixture of sodium and chloride ions in water					
	a m	ixture of sodium, chloride, oxide and hydrogen ions	[1]				
(d)	Des	scribe a test for chloride ions.					
	test						
	resi	ult[[2]				
(e)		The rock surrounding the layers of salt is anhydrite. Pure anhydrite has the chemical formula CaSO₄.					
	(i) State the name of the chemical found in anhydrite.						
			[1]				
	(ii)	Calculate the relative formula mass of the chemical in pure anhydrite.					
			[1]				
	(iii)	When anhydrite reacts with water, gypsum (CaSO ₄ .2H ₂ O) is formed. Complete the equation for this reaction.					
		$CaSO_4 + CaSO_4.2H_2O$	[1]				
	(iv)	Which one of the following describes this reaction? Put a ring around the correct answer.					
		combustion fermentation hydration oxidation reduction [[1]				

	(v)	The chemical in anhydrite can be made by reacting calcium hydroxide with sulphuric acid. Complete the balanced equation for this reaction.
		$Ca(OH)_2$ + H_2O [2]
	(vi)	The spring water running through the rocks changes anhydrite into gypsum. This reaction is exothermic. Use this information to explain why the temperature of the mine never falls below 17 °C even in cold winters.
		[1]
(f)	Whi with	e air inside the mine contains 19% oxygen. ich one of the following best describes the oxygen level inside the mine compared in that outside the mine? one box.
	the	level of oxygen inside the mine is higher
	the	level of oxygen is the same
	the	level of oxygen is about a quarter of that of the outside air
	the	level of oxygen inside the mine is lower
		[1]
	the	

3 Hydrogen peroxide solution, H_2O_2 , decomposes slowly in the absence of a catalyst. Oxygen and water are formed.


$$2H_2O_2(aq)$$
 \longrightarrow $2H_2O(l) + O_2(g)$

(a) Draw a diagram of the apparatus you could use to investigate the speed of this reaction.

You must label your diagram.

[3]

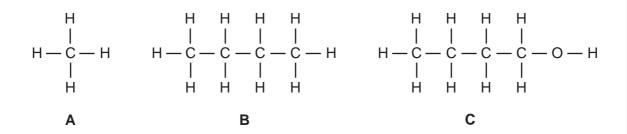
(b) Catalyst X was added to 50cm³ of hydrogen peroxide solution at 20°C and the amount of oxygen given off was recorded over a two minute period. The experiment was repeated with the same amounts of catalyst Y and catalyst Z. Apart from the type of catalyst, all conditions were kept the same in the three experiments. A graph of the results is shown below.

(i) What is a catalyst?

© UCLES 2005

[1]

	(ii)	Which catalyst, X , Y or Z , produced oxygen gas the fastest? Explain your answer.
		[2]
	(iii)	Why is the final amount of oxygen gas the same in each experiment?
		[1]
1	(iv)	Many transition metals and their oxides are good catalysts. State two other properties of transition metals which are not shown by other metals.
		[2]
(c)	All o	experiment with catalyst Z was repeated at 40°C. other conditions were kept the same. speed of the reaction increased. lain why, using ideas about particles.
		[2]
(d)	Sor	ne enzymes also catalyse the decomposition of hydrogen peroxide.
	(i)	State one difference between an enzyme and an inorganic catalyst such as a transition metal.
		[1]
	(ii)	Enzymes are also responsible for fermentation reactions. Which one of the following equations A , B , C or D describes fermentation?
		A $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$
		$\mathbf{B} \mathbf{C}_2\mathbf{H}_4 \ + \ \mathbf{H}_2\mathbf{O} \longrightarrow \mathbf{C}_2\mathbf{H}_5\mathbf{O}\mathbf{H}$
		$C C_6H_{12}O_6 \longrightarrow 6C + 6H_2O$
		$\mathbf{D} C_6H_{12}O_6 \longrightarrow 2C_2H_5OH \ + \ 2CO_2$
		[1]


4 The list shows some oxides.

calcium oxide magnesium oxide nitrogen dioxide sodium oxide sulphur dioxide

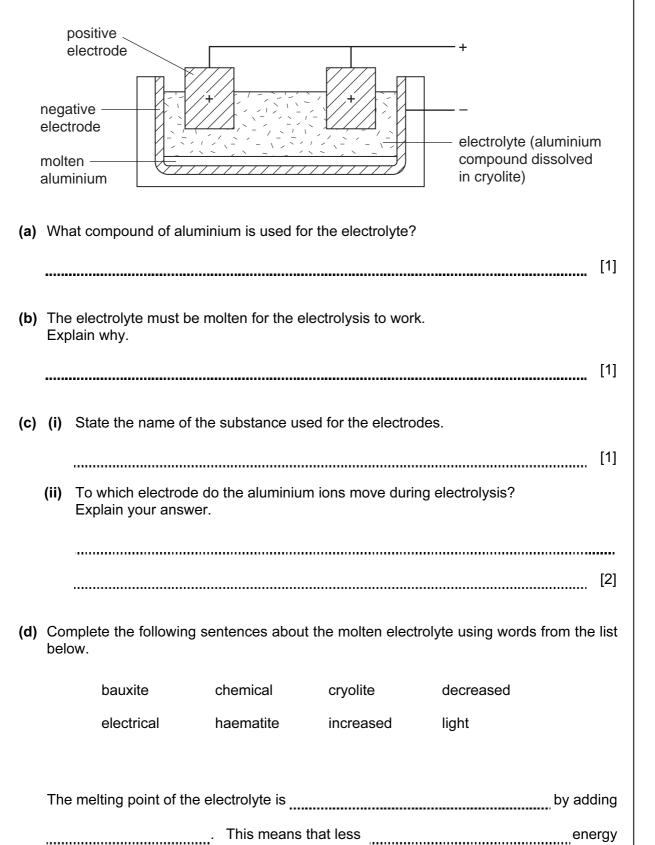
		Sulpitui	MOXIGE	
(a)		rom this list choose two oxides which are ive a reason for your answer.	basic.	
				 [2]
(b)	(i)	Which two oxides from this list contribu	ite to acid rain?	
				[2]
	(ii)	How do each of these oxides get into the	ne atmosphere?	
		name of oxide		
		source of oxide		[1]
		name of oxide		
		source of oxide		[1]
(c)	Cal	alcium oxide is manufactured from calciur	n carbonate.	
	(i)	Complete the word equation for this rea	action.	
		calcium carbonate —► calcium oxide -	-	[1]
	(ii)	What condition is needed for this reacti	on to take place?	
				[1]

(d) (i)	Explain why calcium oxide and sodium oxide cannot be reduced by heating vectors.	vith
		[1]
(ii)	Copper(II) oxide can be reduced by heating with carbon. Complete the equation for this reaction.	
	CuO + C → 2Cu +	[2]
(iii)	What do you understand by the term reduction?	
		[1]

5 The structures of some organic compounds are shown below.

(a) Name compound A.

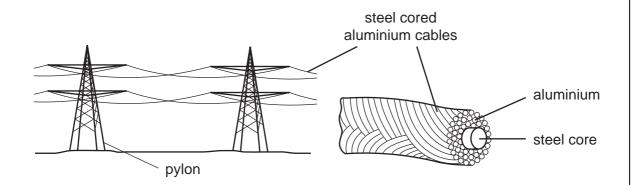
[1]


- (b) Which **two** of the compounds **A** to **E** belong to the same homologous series?
- (c) (i) Which one of the compounds A to E has the same functional group as ethanol?
 - (ii) Draw the structure of ethanol, showing all atoms and bonds.

(iii) Describe how ethanol is made in industry from ethene.

[2]

(d)	(i)	Which one of the compounds A to E is an unsaturated hydrocarbon?	
			[1]
	(ii)	Describe a chemical test for an unsaturated hydrocarbon.	
		test	
		result	[2]
(e)	Cor	mpound E is acidic.	
	(i)	State the name of compound E .	
			[1]
	(ii)	Describe a test to show that compound E is acidic.	
		test	
		result	[2]


6 The diagram shows an electrolysis cell used to extract aluminium.

[3]

is needed to melt the electrolyte.

(e) Aluminium is used in overhead power cables.

The table shows some properties of three metals which could be used for the power cables.

metal	relative electrical conductivity	density / grams per cm³	price / £ per kg	relative strength
aluminium	0.4	2.70	18	9
copper	0.7	8.92	15	30
steel	0.1	7.86	2.7	50

(i)	Suggest why alum	inium is used for ov	erhead power cable	es rather than copper.	
					[1]
(ii)	Suggest why steel	is not used alone fo	or overhead power o	cables.	
					[1]
(iii)	Why is steel used	as a core for overhe	ead power cables?		
					[1]
(iv)	Which one of the f	s are used in parts of ollowing is an electriche correct answer.	. •	carry the electrical cab	oles.
	aluminium	ceramic	graphite	zinc	[1]

(f)	Alu	minium has many uses.	
	(i)	Why is aluminium used for aircraft bodies?	
			[1]
	(ii)	Describe a test for aluminium ions.	
		test	
		result	
			[3]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

						16				Π
	0	4 He Helium	20 Ne Ne On 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium	
	=>		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine	At Astatine 85		173 Yb Ytterbium 70	
	>		16 Oxygen 8	32 S Sulphur 16	79 Selenium	128 Te Tellurium	Po Polonium 84		169 Tm Thulium	
	>		14 N Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bis Bismuth 83		167 Er Erbium 68	
	≥		12 C Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tin 50	207 Pb Lead		165 Ho Holmium 67	
	≡		11 Boron 5	27 A 1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T t Thallium		Dy Dysprosium	
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	
					64 Cu Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	
Group					59 N ickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	
G			ı		59 Cobalt 27	Rhodium 45	192 Ir Iridium		Samarium 62	
		T Hydrogen			56 Fe Iron	Ru Ruthenium 44	190 OS Osmium 76		Pm Promethium 61	
					Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	000
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	
					51 V Vanadium 23	93 Nbb Niobium 41	181 Ta Tantalum		140 Ce Cerium 58	CCC
					48 T Itanium	2 Zirconium	178 Hf Hafnium		1	nic mass
					Scandium 21	89 ×	139 La Lanthanum 57 *	Actinium 89	d series series	a = relative atomic mass
	=		Be Beryllium	24 Mg Magnesium 12	40 Calcium 20	Strontium	137 Ba Barium 56	226 Rad ium Radium 88	*58-71 Lanthanoid series 90-103 Actinoid series	а
	-		7 Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	Caesium 55	Fr Francium 87	*58-71 L 90-103	_

16

oid series	ه 4	141 D	4 4 7	P	150 C	152 F.1	157 Gd	159 H	162	165	167 Fr	169 Tm		175
id series	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
a = relative atomic mass	232		238											
X = atomic symbol	ഥ	Ра	D	ď	Pu	Am	Cm	B¥	ర	Es	Fm	Md	2	۲
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Key