UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY Paper 3	0620/03
	October/November 2004
Candidates answer on the Question Pape No Additional Materials required.	1 hour 15 minutes
Candidate Name	
Centre Number	Candidate Number
READ THESE INSTRUCTIONS FIRST	
Write your Centre number, candidate number and name Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough	

WRITE IN THE BOXES PROVIDED ON THE QUESTION PAPER

DO NOT WRITE IN THE BARCODE.

DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

Do not use staples, paper clips, highlighters, glue or correction fluid. You may use a calculator.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part questions.

A copy of the Periodic Table is printed on page 16.

For Examin	ner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 15 printed pages and 1 blank page.

UNIVERSITY of CAMBRIDGE International Examinations

- 2
- (a) Two of the gases in air are nitrogen and oxygen. Name two other gases present in unpolluted air.

For Examiner's Use

[2]

(b) Two common pollutants present in air are sulphur dioxide and lead compounds. State the source and harmful effect of each.

sulphur dioxide

1

source	
harmful effect	[3]

lead compounds

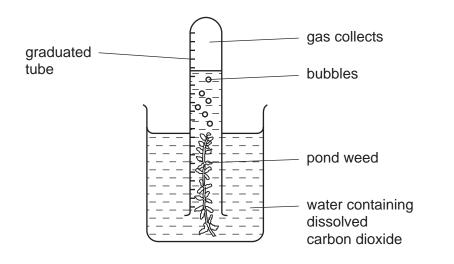
source	
harmful effect	[2]

- (c) Respiration and photosynthesis are two of the processes that determine the percentage of oxygen and of carbon dioxide in the air.
 - (i) Name another process that changes the percentages of these two gases in air.

[1]

(ii) The equation for photosynthesis is given below.

 $6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$


This is an endothermic reaction.

Complete the reaction for respiration.

C ₆ H ₁₂ O ₆ + 6	iO₂ →	+	
This is an		reaction.	21

(d) The rate of photosynthesis of pond weed can be measured using the following experiment.

For Examiner's Use

(i) Describe how you could show that the gas collected in this experiment is oxygen.

[1]

[2]

- (ii) What measurements are needed to calculate the rate of this reaction?
- (iii) What would be the effect, and why, of moving the apparatus further away from the light?

2 The salt copper(II) sulphate can be prepared by reacting copper(II) oxide with sulphuric acid. For Examiner's Use

Complete the list of instructions for making copper(II) sulphate using **six** of the words below.

blue	e cool	di	ilute	filter	
	saturated	sulphate	white	oxide	9
Instructio	ns				
1	Add excess copp beaker and boil it				sulphuric acid in a
2			to remove the u	Inreacted copp	per(II) oxide.
3	Heat the solution	until it is			
4			the solution to t	form	
	coloured crystals	of copper (II))		. [6]

- **3** The simplest alcohol is methanol.
 - (a) It is manufactured by the following reversible reaction.

CO (g) + 2H₂ (g) 300 °C 30atm
(g)

- (i) Reversible reactions can come to equilibrium. Explain the term *equilibrium*.
 - [1]
- (ii) At 400 °C, the percentage of methanol in the equilibrium mixture is lower than at 300 °C. Suggest an explanation.

(iii) Suggest two advantages of using high pressure for this reaction. Give a reason for each advantage.

advantage	
reason	

advantage	
reason	
	[5]

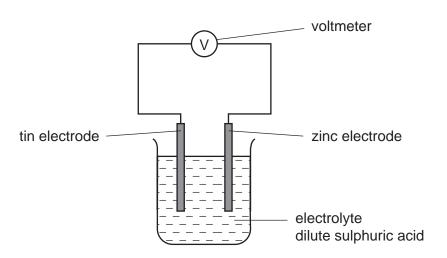
For Examiner's Use

(b) (i) Complete the equation for the combustion of methanol in an excess of oxygen. For Examiner's Use CH₃OH + O₂ -+ [2] (ii) Complete the word equation. methanol + ethanoic acid -+ [2]

(iii) Methanol can be oxidised to an acid. Name this acid.

- 4 In the following list of ionic equations, the metals are in order of reactivity.
 - + ► Zn²⁺ + Zn ____ 2e⁻ __► Sn²⁺ reactivity of metals increases + 2e⁻ Sn ► Hg²⁺ Hg 2e⁻ + Ag ⊾ Ag⁺ + e⁻
- (a) (i) In the space at the top of the series, write an ionic equation that includes a more reactive metal. [1]
 - (ii) Define oxidation in terms of electron transfer.

[1]


(iii) Explain why the positive ions are likely to be oxidising agents.

[1]

For Examiner's Use

(iv) Which positive ion(s) can oxidise mercury metal (Hg)?

(b) The following diagram shows a simple cell.

- (i) Predict how the voltage of the cell would change if the tin electrode was replaced with a silver one.
 - [1]

For Examiner's Use

- (ii) Which electrode would go into the solution as positive ions? Give a reason for your choice.
 - [1]
- (iii) State how you can predict the direction of the electron flow in cells of this type.

© UCLES 2004

5 Strontium and sulphur chlorides both have a formula of the type XCl₂ but they have different properties.

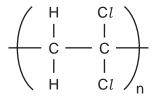
For Examiner's Use

property	strontium chloride	sulphur chloride		
appearance	white crystalline solid	red liquid		
melting point / °C	873	-80		
particles present	ions	molecules		
electrical conductivity of solid	poor	poor		
electrical conductivity of liquid	good	poor		

- (a) The formulae of the chlorides are similar because both elements have a valency of 2. Explain why Group II and Group VI elements both have a valency of 2.
 - [2]
- (b) Draw a diagram showing the arrangement of the valency electrons in one covalent molecule of sulphur chloride.
 Use x to represent an electron from a sulphur atom.
 Use o to represent an electron from a chlorine atom.

[3]

- (c) Explain the difference in electrical conductivity between the following.
 - (i) solid and liquid strontium chloride


[1]

(ii) liquid strontium chloride and liquid sulphur chloride

- 6 Polymers are extensively used in food packaging. Poly(dichloroethene) is used because gases can only diffuse through it very slowly. Polyesters have a high thermal stability and food can be cooked in a polyester bag.

10

(a) (i) The structure of poly(dichloroethene) is given below.

Draw the structural formula of the monomer.

[1]

For Examiner's

Use

(ii) Explain why oxygen can diffuse faster through the polymer bag than carbon dioxide can.

[2]

(b) (i) A polyester can be formed from the monomers $HO-CH_2CH_2-OH$ and $HOOC-C_6H_4-COOH$. Draw the structure of this polyester.

(Ii) Name a naturally occurring class of compounds that contains the ester linkage.

For Examiner's Use

[1]

- (iii) Suggest what is meant by the term thermal stability.
 - [1]
- (c) (i) Describe two environmental problems caused by the disposal of plastic (polymer) waste.

(ii) The best way of disposing of plastic waste is recycling to form new plastics. What is another advantage of recycling plastics made from petroleum?


7 (a) (i) Write a symbol equation for the action of heat on zinc hydroxide.

- (ii) Describe what happens when solid **sodium** hydroxide is heated strongly.
- [1]

[5]

[2]

(b) What would be observed when copper(II) nitrate is heated?

(c) Iron(III) sulphate decomposes when heated. Calculate the mass of iron(III) oxide formed and the volume of sulphur trioxide produced when 10.0 g of iron(III) sulphate was heated.

Mass of one mole of $Fe_2(SO_4)_3$ is 400 g.

$$Fe_{2}(SO_{4})_{3}(s) \longrightarrow Fe_{2}O_{3}(s) + 3SO_{3}(g)$$
Number of moles of $Fe_{2}(SO_{4})_{3} =$
Number of moles of $Fe_{2}O_{3}$ formed =
$$g$$
Mass of iron(III) oxide formed =
$$g$$
Number of moles of SO₃ produced =
$$dm^{3}$$

© UCLES 2004

For Examiner's Use

- 8 The alkenes are a homologous series of unsaturated hydrocarbons.
 - (a) The table below gives the names, formulae and boiling points of the first members of the series.

name	formula	boiling point/°C	
ethene	C_2H_4	-102	
propene	C_3H_6	-48	
butene	C_4H_8	-7	
pentene	C_5H_{10}	30	
hexene			

(i) Complete the table by giving the formula of hexene and by predicting its boiling point.

[2]

(ii) Deduce the formula of the alkene which has a relative molecular mass of 168. Show your working.

[2]

(b) Describe a test that will distinguish between the two isomers, but-2-ene and cyclobutane.

test	
result with but-2-ene	
result with cyclobutane	[3]

For Examiner's Use

- (c) Alkenes undergo addition reactions.
 - (i) What class of organic compound is formed when an alkene reacts with water?
- [1]

For Examiner's Use

(ii) Predict the structural formula of the compound formed when hydrogen chloride reacts with but-2-ene.

[1]

(iii) Draw the structure of the polymer formed from but-2-ene.

BLANK PAGE

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

0620/03/O/N/04

www.theallpapers.com

DATA SHEET The Periodic Table of the Elements

	0	4 Heium	20 Neon 10 Neon 40 Ar	84 Krypton 36	131 Xe 54	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	٨I	N	19 F 9 35.5 C1 10 10 10 17 18 18 18 18 18 18 18 18 18 18	80 Bromine 35	127 I Iodine 53	At Astatine 85		173 Yb Vtterbium 70	Nobelium 102
	>		16 8 Oxygem 32 32 32 32 8 Suphur 16	79 Selenium 34	128 Tellurium 52	Polonium 84		169 Tm Thulium 69	Mendelevium 101
	>		14 Nitrogen 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	100 Fermium
	≥		12 Carbon 6 28 Silicon	73 Ge Germanium 32	119 Sn 50	207 Pb ^{Lead}		165 HOM HOIMium 67	Einsteinium 99
	≡		11 B B Boron 5 27 Aluminium	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium 81		162 Dysprosium 66	Californium 98
				65 Zinc 30	112 Cadmium 48	201 Hg Mercury 80		159 Tb ^{Terbium} 65	BK Berkelium 97
				64 Copper 29	108 Åg Silver 47	197 Au Gold 79		157 Gd Gadolinium 64	96 Curium
Group				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Americium 95
G				59 Cobalt 27	103 Rhodium 45	192 Ir Iridium		150 Sm Samarium 62	Putonium 94
		¹ Hydrogen		56 Iron 26	101 Ru Ruthenium 44	190 OS Osmium 76		Promethium 61	Neptunium 93
				55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 Uranium 92
				52 Chromium 24	96 Mo lybdenum 42	184 V Tungsten 74		141 Pr Praseodymium 59	Protactinium 91
				51 Vanadium 23	93 Niobium	181 Ta Tantalum 73		140 Ce ^{Cerium}	232 Th Thorium 90
			48 Titanium 22	91 Zr 2irconium 40	178 Hafnium 72		l	mic mass nbol mic) number	
				45 Scandium 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89	id series series	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Beryllium 24 Magnesium	40 Calcium 20	88 St rontium 38	137 Ba Barium 56	226 Rad ium 88	*58-71 Lanthanoid series 90-103 Actinoid series	σ ×
	_		7 Lithium 3 23 23 23 23 11 Sodium	39 F otassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 90-103	key

The volume of one mole of any gas is $24 \, dm^3$ at room temperature and pressure (r.t.p.).

16