International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS CHEMISTRY 0620/2

PAPER 2

OCTOBER/NOVEMBER SESSION 2002

1 hour

Candidates answer on the question paper. No additional materials are required.

Time 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

A copy of the Periodic Table is printed on page 16.

FOR EXAMINER'S USE			
1			
2			
3			
4			
5			
6			
TOTAL			

This question paper consists of 16 printed pages.

1 Ammonia, NH₃, is synthesised by the following route.

methane ———— hydroger	า
	iron catalyst
	→ ammonia
air ——— nitrogen	•

(a) (i) To which group of organic compounds does methane, CH_4 , belong? Put a ring around the correct answer.

alkane	alcohol	alkene	carboxylic acid
			[1]

(ii) Draw the formula for methane, showing all atoms and bonds.

			[1]
	(iii)	State the most likely source of methane.	
			[1]
(b)	(i)	State the percentage of nitrogen in clean air.	
			[1]
	(ii)	Name another non-metal that is in the same Period as nitrogen.	
			[1]
(c)	Amm	onia is made by heating hydrogen with nitrogen in the presence of a catalyst.	
	(i)	What is the purpose of the catalyst?	

What happens to the rate of a reaction when the temperature is increased?

(ii)

[1]
[1]
[0]
[2]
[2]
[1]

[1]

Complete the word equation to show how ammonium sulphate is formed.

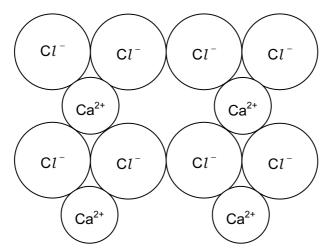
 \longrightarrow ammonium sulphate

Some fertilizers contain ammonium sulphate.

(ii)

ammonia +

2 When rain water trickles through rocks, it dissolves some of the minerals present.


This water, which is bottled for drinking, is called mineral water.

The table shows the ions present in a litre of mineral water.

name of ion	formula of ion	mass of ion present in one litre of water/milligrams
calcium	Ca ²⁺	10
chloride	Cl-	8
hydrogencarbonate	HCO ₃	64
sodium	Na⁺	8
sulphate	SO ₄ ²⁻	7

(a)	What do you understand by the term ion?
	[1]
(b)	Which positive ion has the greatest concentration in this sample of water?
	[1]
(c)	Complete the following equation to show how a calcium ion is formed from a calcium atom.
	Ca \longrightarrow Ca ²⁺ + e ⁻
	[1]
(d)	When this sample of mineral water is evaporated to dryness, various compounds are formed. One of these compounds is calcium chloride.
	Suggest the name of two other compounds which could be formed.
	compound 1
	compound 2 [2]

(e) Part of the structure of calcium chloride is shown below.

Use this diagram to work out the simplest formula for calcium chloride.

formula	['	1]
	<u> </u>	-

(f) Complete the following table to show the electrical conductivity of calcium and calcium chloride in the solid and liquid states.

Put a ✓ if the substance conducts.

Put a **x** if the substance does not conduct.

substance state		electrical conductivity
calcium	solid	
calcium	liquid	
calcium chloride	solid	
calcium chloride	liquid	

[2]

(g) A sample of water was contaminated with clay, which is insoluble in water.

Explain with the help of a labelled diagram, how you would separate the clay from the water.

- 3 Fluorine, chlorine, bromine and iodine are halogens.
 - (a) Complete the table by filling in the blank spaces.

halogen	colour	melting point /°C	boiling point /°C	state at room temperature
fluorine	yellow	-220	-188	
chlorine		-101	-35	gas
bromine	reddish- brown	-7	+59	
iodine		+114		solid

[4]

(b) Predict the boiling point of iodine.

[1]


(c) When chlorine is bubbled through a solution of potassium bromide, the solution turns orange - red.

When iodine is mixed with potassium bromide, no colour change occurs.

(i) Write a word equation for the reaction between chlorine and potassium bromide.

[2]

(ii) Put the elements bromine, chlorine and iodine in order of reactivity.

[1]

(d) State a use of chlorine.

[1]

(e) In the presence of sunlight, chlorine reacts with methane.

Hydrogen chloride gas, H — Cl, is given off during this reaction.

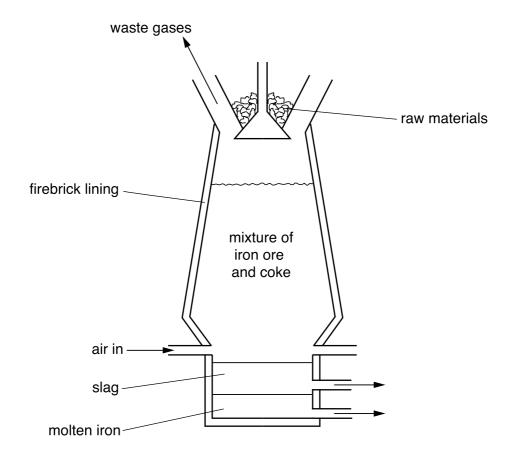
State the type of bonding in a hydrogen chloride molecule.

Put a ring around the correct answer.

covalent ionic metallic weak

[1]

4 Some organic compounds found in ripe fruits are shown below.


HH				
`C`		CH ₃ CO ₂ H	CH	3CH2CH2CO2H
A A		В		С
	CH₃CH₂OH		CH₃CH₂CHO	

	•		0.130.120	
		D	E	
(a)	What do you	understand by the	term organic compou	ınd?
				[1
(b)	Which two o	f the compounds be	elong to the same hor	nologous series?
	compound		and compound	[1]
(c)	Which one o	f these compounds	is an unsaturated hy	drocarbon?
				[1]
(d)		f these compounds		
				[1]
(e)	Which one of from petroles		s can be formed direc	tly by cracking the paraffin fraction
				[1
(f)	Compound [burns readily.		
	(i) Burning	g is an exothermic ı	reaction.	
	Explair	n the meaning of the	e term <i>exothermic</i> .	
	***************************************			[1]
	(ii) State t	he products formed	when D burns in exc	ess air.
				[2]

	(iii) Name the carbon compound formed when D undergoes incomplete combustion.	
	[1]	l
(g)	Write down the molecular formula of compound C .	
	[1]]
(h)	Calculate the relative molecular mass of compound C .	
	[1]	
(i)	Many fruits contain a variety of different coloured compounds.	
	What separation technique can you use to separate these different coloured compounds?	
	[1]]

5 Iron is extracted from the ore, haematite.

The iron ore is put in a blast furnace with coke and a current of air is blown through the heated mixture.

	cement	limewater	limestone	slag	
	Put a ring around th	ne correct answer.			
(b)	What other raw mat	terial needs to be adde	d to the blast furnace?		
					[1]
(a)	what do you unders	tand by the term <i>ore</i> ?			
(-)	Mhat da vau undara	tand by the tarm ere?			

[1]

1-1	Near the botton	a af tha forman	: / TTT		maduraad by	
(C)	near the botton	n oi ine iumace	irontti	i oxide is	reaucea o	/ carbon

 Fe_2O_3 + 3C \rightarrow 2Fe + 3CO

(i) Write a word equation for this reaction.

[1]

(ii)	Explain \	what is	meant	by the	term	reduction
------	-----------	---------	-------	--------	------	-----------

[1]

(d) The table shows the composition of the waste gases leaving the blast furnace.

gas	percentage of gas in the mixture
carbon dioxide	12
carbon monoxide	24
hydrogen	4
nitrogen	60

(i) The hydrogen in the waste gas is formed by the reaction of hot carbon with water vapour.

There is no water in the materials added to the top of the furnace.

Suggest where this water vapour comes from.

______[1]

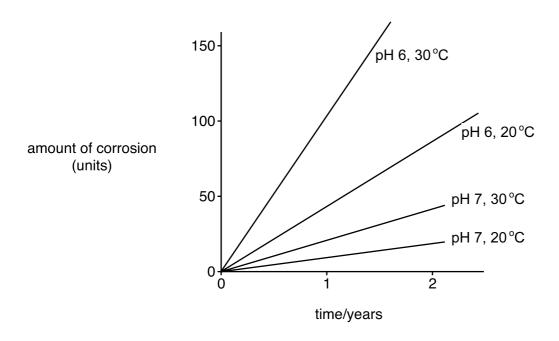
(ii) The reaction of hot carbon with water vapour is endothermic.

What is meant by the term *endothermic*?

[1]

(e) Iron can be converted into steel, which is more resistant to corrosion.

(i) Describe briefly how iron is converted into steel.

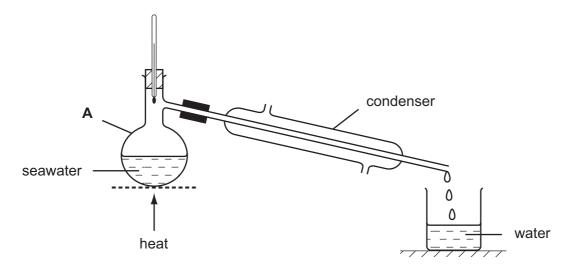

[2]

(ii) State one use of mild steel.

_____[1]

(f) In some conditions, steel corrodes more quickly than in others.

The graphs show the rate of corrosion of a particular type of steel under different controlled conditions.



(i)	How does pH affect the rate of corrosion?	
		[1]
(ii)	How does temperature affect the rate of corrosion?	
		[1]
	Explain this in terms of moving particles.	
		[2]

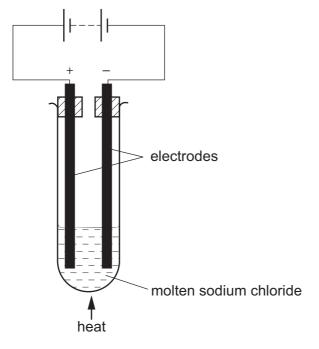
(iii) The presence of acidic gases in the air may increase the rate of corrosion.
State the name and source of one acidic gas found in the air as a result of pollution.

name		
source	***************************************	[2]

6 A student took a sample of seawater and heated it using the apparatus shown below.

(a)	What	is the name given to the process shown in the diagram?	
			[1]
(b)	State	the name of the piece of apparatus labelled A .	
			[1]
(c)	Expla	in the function of the condenser.	
			 [2]
(d)	Pure	water collects in the beaker.	
	(i)	State the pH of pure water.	
			[1]
	(ii)	State the boiling point of pure water.	

[1]


(e) The table shows the mass of various compounds obtained when 1 litre of seawater is evaporated.

compound	formula	mass of solid present / g
sodium chloride	NaC1	28.0
	MgCl ₂	8.0
magnesium sulphate	MgSO ₄	6.0
calcium sulphate	CaSO ₄	2.0
potassium chloride	KC1	
calcium carbonate	CaCO ₃	1.0
potassium bromide	KBr	
		total mass = 45.0

(i) How many grams of magnesium sulphate are present in 180 g of solid left by evaporation of seawater?

(ii)	Which compound in the table reacts with acids to release carbon dioxide?	
		[1]
(iii)	State the name of the compound which has the formula MgC $\it{l}_{\rm{2}}$.	
		[1]
(iv)	Calcium sulphate contains sulphate ions.	
	Describe a test for sulphate ions.	
	test	
	result	

(f) Pure sodium chloride can be electrolysed using the apparatus shown below.

(i)	Why does the sodium chloride have to be molten for electrolysis to occur?	
		[2]
(ii)	State the name of the product formed during electrolysis at the anode (positive electrode)	
	the cathode (negative electrode)	[2]
(iii)	Suggest a suitable substance which could be used for the electrodes.	[41
		[1]

DATA SHEET
The Periodic Table of the Elements

		-						Group	dn								
_	=											≡	≥	>	>	II/	0
							T Hydrogen										Heium
7 Cithium	9 Be											11 Boron 5	12 Carbon	14 N itrogen 7	16 Oxygen 8	19 Fluorine	20 Ne Neon
23 Na Sodium	24 Mg Magnesium 12	E										27 A1 Aluminium	28 Si Silicon	31 Phosphorus 15	32 S Sulphur 16	35.5 C1 Chlorine	40 Ar Argon
39 K Potassium	Ca Calcium	Sc Scandium 21	48 T Titanium	51 V Vanadium 23	52 Chromium 24	Mn Manganese 25	56 Fe Iron	59 Co Cobalt	59 Ni Nickel	64 Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium			80 Br Bromine 35	84 Kr Krypton 36
85 Rb Rubidium 37	Sr Strontium	89 ×	2r Zrconium 40	93 Noblum	96 Mo Molybdenum 42		Ru Ruthenium 44	103 Rh Rhodium	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	30 Tin 50	122 Sb Antimony 51	128 Te Tellurium	127 I lodine	131 Xe Xenon
133 Cs Caesium 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium	181 Ta Tantalum	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T 1 Thallium	207 Pb Lead 82	209 Bi Bismuth 83	Po Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Ra Radium 88	227 Ac Actinium															
*58-71 90-103	58-71 Lanthanoid serie 90-103 Actinoid series	*58-71 Lanthanoid series 90-103 Actinoid series	1	140 Ce Cerium 58	Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium	173 Yb Ytterbium 70	Lu Lutetium 71
Key	в Х	a = relative atomic massX = atomic symbolb = proton (atomic) number		232 Th Thorium	Pa Protactinium 91	238 C Uranium		Pu Plutonium	Am Americium 95	Cm Curium 96	BK Berkelium	Californium	ES Einsteinium 99	Fm Fermium 100	Md Mendelevium 101		Lr Lawrendium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).