MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper	
			IGCSE – May/June 2013	0620	33	
1	(a) (i)	by c	<i>nent</i> not be broken into anything simpler hemical means made up of one type of atom only		[1] [1] [2]	
	(ii)	two	<i>pound</i> or more different elements nically bonded together		[1] [1]	
	(iii)	<i>mixt</i> two	<i>ure</i> or more substances not chemically joined together		[1]	
	(b) (i)	mixt	ure		[1]	
	(ii)	com	pound		[1]	
	(iii)	elerr	nent		[1]	
	(c) cor	nductiv	vity (of heat or electricity)		[1] [Total: 9]	
2	(a) (i)	large	e / high surface area		[1]	
		(bet)	collision rate / collide more / many collisions ween oxygen molecules and aluminium atoms) faster collisions		[1]	
	(ii)		centration actants decreases		[1] [1]	
		allov	v one mark ONLY for:			

for reactants used up or amount of reactant decreases

(iii) any three of four from one strand:

M1	increase in temperature			
M2	molecules move faster or particles have more energy			
М3	higher collision rate			
M4	more successful collisions or	more particles have enough energy to react/ <i>E</i> _a		

[3]

[1]

(b) (i) flour or wood dust or coal dust or carbon or sugar

Page 3		5	Mark Scheme	Syllabus	Paper	
				IGCSE – May/June 2013	0620	33
		 (ii) any three from: powder and larger pieces / different sized particles use suitable named solid, e.g. magnesium suitable named solution, e.g. named acid or copper sulfate(aq) result – powder reacts faster than larger pieces NOT Cu (with acid); K / Na with anything 				[3]
3	(a)	(i)	cars	, ships, bridges, construction, white goods, screws,	nails, roofing, fen	cing, etc. [1]
		(ii)	-	stainless steel king utensils, surgical equipment, sinks or main use		[1] [1]
	(b)			NOT air		[1]
		CO	ND 0	lioxide <u>and</u> sulfur dioxide (escape as gases) n reaction with air / oxygen ium oxide / quicklime		[1]
		AL	LOW	calcium carbonate, limestone rus oxide or silicon oxide (are acidic)		[']
		rea	cts (w	vith calcium oxide / CaCO ₃) slag / calcium silicate		[1] [1]
4	(a)	(i)	any	ambiguous formula, e.g. GeH_3 - GeH_2 - GeH_3		[1]
		(ii)		H₂n+₂ Γ C instead of Ge		[1]
	(b)			ormula		[4]
				bps around germanium atom nbps and 1bp around each chlorine atom		[1] [1]
	(c)			gen atoms around each germanium atom		[1]
			ahedi	nanium atoms around each oxygen atom ral		[1] [1]
	(d)		datior			[1]
				ncrease in oxidation number F: electron loss		[1]

	Page 4	Ļ	Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2013	0620	33
5	(a) (i)		Group 1 metal CEPT: lithium		[1]
	(ii)	PbO	$(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$ [1] ND balancing [1]		[2]
	(iii)		netal in a (i) is more reactive than lead e reactive metals have more stable compounds		[1]
		OR I	has stronger (ionic) bonding		[1]
	(b) (i)	•	ed / rate of forward reaction = speed / rate of back re macroscopic properties do not change / constant (w		[1]
	(ii)	CON	s darker OR goes brown ID lower pressure favours side with more moles ID this is NO ₂ side OR reactant side OR goes left		[1] [1] [1]
	(iii)	exot	hermic		[1]
			temperatures favour the exothermic reaction or temperatures moves equilibrium to right / product s	ide / towards N_2O_4	[1]
	(iv)	forw	ard reaction is bond forming		[1]
6	(a) (i)	pure	sure melting point NOT just he sample would melt at 135 °C impure would melt lower than 135 °C	neating	[1] [1]
	(ii)	C₃H₄	4 O 4		[1]
	(iii)	etha	₄O₂ OR CH₃COOH noic OR acetic acid marks are independent of each other		[1] [1]
	(iv)	este	r NOT orga	nic, covalent	[1]
	(b) (i)	OR s	onic is a weaker acid/less dissociated sulfuric acid is a stronger acid/more dissociated sulfuric acid is a strong acid		[1]

Page 5			Syllabus	Paper			
		IGCSE – May/June 2013	0620	33			
(ii)	add	piece of suitable metal, e.g. Mg ALLOW A <i>l</i> , Ca NO	T K, Na, Cu	[1]			
	sulfu	uric acid reacts fast er OR malonic reacts slow er		[1]			
	OR						
	as a	bove add a piece of CaCO ₃ , if soluble carbonate the	en [1] only				
		measure electrical conductivity		[1]			
		uric acid is the bett er conductor malonic acid poor er conductor		[1]			
		sulfuric acid is a good conductor					
(c) (i)	sodi	um malonate <u>and</u> water		[1]			
(ii)	CuS	O ₄					
.,	H ₂ C			[2]			
(iii)		(COO) ₂ Mg		[0]			
	H ₂			[2]			
(iv)	K_2S_2 CO ₂	O_4 and H_2O NOT H_2CC	D_3	[2]			
	_		-	[Total: 16]			
				[Total: Toj			
7 (a) (i)	a co	mpound which contains carbon and hydrogen only		[1]			
(ii)		nes contain only C-C single bonds					
		ney are saturated (hydrocarbons) ave the general formula C _n H _{2n+2}		[1]			
	alke	nes contain at least one C=C double bond					
		ney are unsaturated (hydrocarbons)		[4]			
	OF II			[1]			
(b) C ₂₀	H ₄₂ -	$\rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$		[1]			
(c) (i)	-	unambiguous structure of BrCH₂CH₂Br Γjust C₂H₄Br₂		[1]			
<i>(</i> ii)				[2]			
('')		any butene [1] only		[4]			
(iii)		$_{3}$ -CH ₂ -CH=CH ₂) + H ₂ O [1] \rightarrow CH ₃ -CH ₂ -CH ₂ -CH ₂ OI	H [1]	[2]			
		. OW CH ₃ -CHOH-CH ₂ -CH ₃ ene reacts with water/steam (to form butanol) ONLY	([1]				
				[0]			
(17)		$_{12} + \Pi_2 \rightarrow C_6 \Pi_{14}$ nes react with hydrogen [1] ONLY		[2]			
(d) vol	ume c	of oxygen used = 150 cm ³		[1]			
(c) (i) (ii)	H ₄₂ - any NOT CH ₃ For a (CH	unambiguous structure of BrCH ₂ CH ₂ Br Γ just C ₂ H ₄ Br ₂ -CH=CH-CH ₃ any butene [1] only $_3$ -CH ₂ -CH=CH ₂) + H ₂ O [1] \rightarrow CH ₃ -CH ₂ -CH ₂ -CH ₂ OF	Н [1]				
			([1]				
(iv)	C ₆ H	$_{12}$ + H ₂ \rightarrow C ₆ H ₁₄		[2]			
(d) vol	(d) volume of oxygen used = 150cm^3						

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0620	33
any	of carbon dioxide formed = 100 cm^3 / equation of the combustion of an alkene $_5H_{10} + 15O_2 \rightarrow 10CO_2 + 10H_2O$		[1]
formula			[1]