MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2013	0620	32
1	(a) (i	named noble gas accept: any noble gas accept: symbol		[1]
	(i		H ₂ O / CO ₂ not: names not: equations		[1]
	(b) (oxygen and nitrogen (in air) (react) at high temperature accept: in engines / lightning not: in exhausts		[1] [1]
	(i	,	fossil fuels / fuels which contain sulfur accept: named fossil fuel such as coal / oil / natural burn / combust	gas	[1] [1]
	(ii	, (any two from: damage buildings / soil acidification / leaching unavailable / kill microbes / acidify lakes / kill fish growth / crop loss		
	(c) (oxygen reacts with copper to form copper oxide (which is black)		[1] [1]
	(i	, i	measure volume at room temperature / gas h temperatures / volume of gas depends on tempera heat causes expansion (of gases) / ORA		
	(ii	i i) 1	no oxygen left or <u>all</u> the oxygen has reacted (with co	pper)	[1]
	(iv	v) :	39–40 cm ³ note: units required		[1]
2	(a) E F		K ive charge +		[1] [1]
	(5_{30}^{65}	Zn		[1]
		D ¹⁶ 8 char	O ge 2–		[1] [1]
	E	$= \frac{70}{31}$	Ga		[1]
	(b) r	numl	ber of p = number of e		[1]
	number of p > number of e				[1]
	number of p < number of e				[1]

Page 3			3	Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2013	0620	32
3	(a)	(i)	complete combustion / combustion in excess oxygen			[1]
			of fu	uels containing carbon / fossil fuels / hydrocarbon (fu	[1]	
			prod	atmosphere	[1]	
		(ii)	liviną (oxic suga	[1] carbohydrate / [1]		
			prod		[1]	
	(b) (i) gl			ose or starch or carbohydrate		[1]
			oxyg	gen		[1]
		(ii)	light	/ sunlight / sun / UV		[1]
			chloi	rophyll accept: chloroplast		[1]
4	(a)	(i)		reaction		
			volu	me / moles / molecules of reactants and products ar	e different	[1]
				ond reaction me / moles / molecules of reactants and products ar	e the same	[1]
	• • •			reaction (forward) reaction is endothermic and reaction (forward) reaction is exothermic		[1] [1]
	(b) (i)		C_8H_1	$_{18} \rightarrow 2C_4H_8 + H_2$		[1]
	(ii)		2H ⁺	+ 2e \rightarrow H ₂		[2]
			acce	$H_3O^+ + 2e \rightarrow H_2 + 2H_2O$ ept: -2e on right hand side accept: e ⁻ e: not balanced = 1		
bacteria / sterilisir			cond bact	rine / Cl ₂ / d: water treatment / solvents / plastics / PVC / b eria / sterilising water / chlorination <u>of water</u> / icides / insecticides / germicides / pharmaceuticals		
			sodi	um hydroxide/NaOH		[1]
				d: making soap / degreasing / making paper / deterg ring drains / alumina from bauxite / oven cleaner / bl	-	/ paint stripper / [1]

	Page 4			Mark Scheme	Syllabus	Paper	
				IGCSE – May/June 2013	0620	32	
5	5 (a) (i)			not decay or non-biodegradable asily moulded or low density / light / lightweight or not corrode or durable	or flexible waterproof / insol	or bendable uble in water or [1]	
	(i	ii)	chloi hydr	two from: rine ogen chloride on monoxide		[2]	
	(b) (i)			—CH = CH₂ : can be fully or semi-displayed, C = C <u>must</u> be sh	own	[1]	
	(ii)			ect repeat unit (C ₆ H ₅)–CH ₂ –		[1]	
		[1]					
		(c) glucose two products (polymer and water) / condensation (polymerisa molecules removed					
	phenylethene one product (polymer) / addition (polymerisation)						
6	(a) ((i)	ions	cannot move / no free ions in solid state can move / free ions in liquid state : ions can <u>only</u> move in liquid state = 2		[1] [1]	
	(ii)		redu	ce melting point / reduce energy costs / better cond	luctor when disso	lved in cryolite [1]	
	(iii) (iv)			s in oxygen / reacts with oxygen / oxidised by oxyg on monoxide	en / forms carbor	n dioxide / forms [1]	
			high	melting point / inert / unreactive		[1]	
	(b) p	orot	ective	e / unreactive / resists / prevents corrosion / non-po	rous (layer)	[1]	
	C	of (a	alumi	nium) oxide		[1]	
	(c) ((i)		l conductor (of electricity) density / light / lightweight		[1] [1]	
	(i	ii)		core (increased) strength / prevent sagging / to inc ration of pylons / support	crease	[1]	

	Page \$			Syllabus	Paper	
			IGCSE – May/June 2013	0620	32	
7	(a) (i)	C ₂ H ₈ note	COOCH ₂ CH ₃ / CH ₃ CO ₂ CH ₂ CH ₃ / CH ₃ COOC ₂ H ₅ / C 5OOCCH ₃ / CH ₃ CH ₂ OOCCH ₃ not: –OCO– linkage i: formulae can be displayed or semi-displayed i: penalise sticks (i.e. any missing atoms)	CH3CO2C2H5 /	[1]	
	(ii)	buty	I methanoate		[1]	
	(b) (i)	fats	/ <u>vegetable</u> oils / triglycerides / lipids		[1]	
	(ii)	(ii) two correct ester linkages, e.g. –OOC / –O ₂ C and –COO / –CO ₂				
		contents of the 'boxes' being C_6H_4 and C_2H_4 or CH_2CH_2 continuation bonds at both ends (c) (i) to make colourless / invisible (spots) visible / coloured / seen / position made clear / indicate (ii) <u>distance travelled by sample</u> = R_f distance travelled by solvent (front)				
	(c) (i)					
	(ii)					
	(iii)		ple 1 R_f = 0.20 to 0.24 tartaric (acid) ple 2 R_f = 0.44 to 0.48 malic (acid)		[1] [1]	
8	(a) (i)	(i) (the number of particles which is equal to the number of atoms in) 12g of carbo				
		the r or	mass <u>in grams</u> which contains the Avogadro's const	ant number of par	ticles	
		-	gadro's constant or 6 to 6.023 × 10 ²³ <u>of atoms</u> <u>cles</u>	/ ions / molecule	<u>s / electrons /</u>	
			amount of substance which has a mass equal to) in nic mass / relative molecular mass <u>in grams</u>	ts relative formula	mass / relative	
			amount of substance which has a volume equal to)	24 dm ³ of a <u>gas</u> at	: RTP [1]	
	(ii)	a su or	s / ions / molecules	in one mole of		
		the <u>r</u> or	number of carbon atoms in 12g of C(12).			
		the r or	number of particles / molecules in 24 dm ³ of a <u>gas</u> at	RTP		
			6.023×10^{23} (particles / atoms / ions / molecules / e	lectrons)	[1]	
	(b) CH	I_4 and	SO ₂		[1]	

 $2/16 = 1/8 \text{ or } 0.125 \text{ moles of } CH_4 \text{ AND } 8/64 = 1/8 \text{ or } 0.125 \text{ moles of } SO_2$ [1]

Page 6	;	Mark Scheme	Syllabus	Paper
		IGCSE – May/June 2013	0620	32
(c) (i)		10 = 0.12 moles of Ca 18 = 0.2 moles of H ₂ O both correct		[1]
(ii)	to re	s in excess (no mark) (because 0.12 moles of Ca act e is not enough / there are 0.2 moles / 3.6g of H ₂ O	need) 0.24 moles	s / 4.32g of H ₂ O [1] [1]
	Ca 0.1m	is in excess (no mark) (because 0.2 moles / noles/4.0g of Ca e is more than that / there are 0.12 moles / 4.8g of 0	-	will react with) [1] [1]
		s in excess (no mark) because the mole ratio Ca:H h is <u>bigger than</u> the required mole ratio of 1:2 / mas	=	atio 4:3 [1] [1]
	Ca is	s in excess (no mark) because the mole ratio H_2O : h is <u>smaller than</u> the required mole ratio of 2:1 / ma		atio 3:4 [1] [1]
(iii)	0.02	× 40 = 0.8 (g)		[1]