UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			IGCSE – May/June 2011	0620	33
1	(i)	Rb/	Sr		[1]
	(ii)	I			[1]
	(iii)	Fe			[1]
	(iv)	Р			[1]
	(v)	Si			[1]
2	(a) (i)	no r	eaction		[1]
		for r	+ $\mathrm{Sn^{2^+}} \rightarrow \mathrm{Fe^{2^+}}$ + $\mathrm{Sn} / \mathrm{2Fe}$ + $\mathrm{3Sn^{2^+}} \rightarrow \mathrm{2Fe^{3^+}}$ + ealising that there would be a reaction shown by an ation e.g. writing $\mathrm{Fe_2Sn}$ etc. allow [1]		[2] nn
		no r	eaction		[1]
	(ii)	All tl	xide, nitrogen dioxide (accept nitogen(IV) oxide/din hree for two ept correct formulae	itrogen tetroxide),	oxygen [2]
		any	two correct products		[1]
	(b) (i)	tin			[1]
	(ii)		$H^- \rightarrow O_2 + 2H_2O + 4e^-$ balanced allow [1]		[2]
	(iii)	sulfu	uric acid		[1]
	` '		ore reactive than iron/steel s reactive than iron/steel		[1] [1]
	for	ms po	rrodes/reacts/loses electrons/is oxidised/is anodiositive ions (in preference to iron or steel) ORA n is cathodic for this mark.	c/provides sacrif	icial protection/
	pre	eferen	el corrodes/reacts/rusts/loses electrons/is oxidised/ ce to tin). ORA is cathodic for this mark	is anodic/forms p	positive ions (in

Mark Scheme: Teachers' version

Syllabus

Paper

Page 2

	Pa	ige ડ	5	Mark Scheme: Teachers' Version	Syllabus	Paper
				IGCSE – May/June 2011	0620	33
3	(a)	(i)	total	centration of thiosulfate is proportional to volume of volume is same in all experiments) / concentration comments based on amount / to make experiments f	of acid always the	same [2]
		(ii)	240	s		[1]
		(iii)	beca	reases/reaction slower ause concentration of thiosulfate decreases uency/chances/rate of collisions decreases		[1] [1] [1]
				mark can be scored for less/smaller amount/sma sions	aller volume of th	iosulfate / less
	(b)	rate	e incre	eases with temperature (or at 42 °C) ORA		[1]
		•		/molecules/ions move faster or gain energy / ORA cept reactants or atoms)		[1]
		mo	re col	lisions / ORA		[1]
		gre	ater f	rk is for qualification of the collisions) i.e. requency / more per unit time/more often /greater of e effective/more successful/more with activation end		y/more collision [1]
4	acc 2Fe Fe ₂ C	ept e ₂ O ₃ ₂ O ₃ - + O ₂	Fe ₂ O + 30 + 3C $\stackrel{\cdot}{}_{2} \rightarrow$	quation $_3 + 3CO \rightarrow 2Fe + 3CO_2$ $C \rightarrow 4Fe + 3CO_2$ $\rightarrow 2Fe + 3CO$ CO_2 $\rightarrow 2CO$		[1]
	Ca	0 +	SiO ₂	be equation $A_2 \rightarrow CaSiO_3$ $A_3 \rightarrow CaSiO_3 + CO_2$		[1]
	car this car car car lime to f	bon bon bon bon estor	burns ction dioxio mono reduc ne rer slag <u>v</u>	equations or comments to form carbon dioxide is exothermic or produces heat de is reduced to carbon monoxide exide reduces hematite to iron the moves silica which is an impurity which is a waste product composes or symbol/word equation		[3]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 3

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	33

5 (a)
$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2/Zn + 2H^+ \rightarrow Zn^{2+} + H_2$$
 [2]

marks are for correct reactants [1] correct products [1] If ionic equation is given don't penalise SO_4^{2-} spectator ions on both sides

the next two marks score for

electrons are lost **AND** gained / oxidation no. or state/valency **both** increases and decreases / two correct half equations i.e. $Zn \rightarrow Zn^{2+} + 2e^-$ and $2H^+ + 2e^- \rightarrow H_2$ [2]

- (c) zinc [1] cond it is the more reactive metal / it supplies electrons / it forms ions more readily than iron [1]
- (d) replace zinc with magnesium replace iron with copper use (more) concentrated sulfuric acid accept use a more concentrated acid / a more concentrated solution

any **two** [2]

	IGCSE – May/June 2011	0620	33
6 (a) (i)	rate at which methanol formed by forward reaction equals rate it is reacting in back reaction rate of forward reaction equals rate of back reaction allo	ow [1]	[1] [1]
(ii)	low/lower/decreased temperature high/higher/increased pressure Explanations not needed but if they are given they must IGNORE values of temperature and pressure	t be correct	[1] [1]
(iii)	high pressure can be used / lower pressure due to expecannot use a low temperature as rate would be too slow	•	[1] ot be economic [1]
(b) (i)	ester		[1]
(ii)	soap/sodium stearate or any acceptable salt/glycerol		[1]
(iii)	burning both fuels forms carbon		[1]
	growing plants to make biodiesel removes carbon dioxid from atmosphere	de	[1]
(c) (i)	correct SF of an octane		[1]
(ii)	add bromine (water)/bromine in an organic solvent result octane remains brown/orange/yellow/red result octane goes colourless/decolourises not clear/discolours colour of reagent must be shown somewhere for [3] oth accept equivalent test using KMnO ₄ in acid or alkali	erwise max [2]	[1] [1] [1]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 5

	IGCSE – May/June 2011	0620	33
	p and 1nbp around phosphorus p and 3nbp around each chlorine		[1] [1]
(b) (i)	$PCl_3 + 3H_2O \rightarrow 3HCl + H_3PO_3$		[1]
(ii)	acid solutions same concentration measure pH/pH paper/Universal indicator hydrochloric acid lower pH		[1] [1] [1]
	colours of Universal indicator can be given as red <or as="" hcl="" ignore="" is="" long="" lower="" ph="" precise="" td="" than<="" values=""><td>•</td><td></td></or>	•	
	OR Acid solutions same concentration add magnesium or any named metal above Hydrogomagnesium	en in reactivity serie	[1] s but not above
	calcium carbonate or any insoluble carbonate hydrochloric acid react faster/shorter time		[1] [1]
	OR acid solutions same concentration measure electrical conductivity hydrochloric acid better conductor/bulb brighter		[1] [1] [1]
	OR acid solutions same concentration add sodium thiosulphate hydrochloric acid forms precipitate faster/less time		[1] [1] [1]
(iii)	sodium hydroxide/sodium carbonate titration cond on correct reagent second mark scores for mention of titration /burette/p	ipette/indicator.	[1] [1]

any named soluble calcium salt e.g. calcium chloride/nitrate/hydroxide

Syllabus

Paper

[1]

[1]

Mark Scheme: Teachers' version

experimental detail not required

precipitation/filter/decant/centrifuge

Page 6

7

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	33

8	(a) (i)	(to avoid) carbon monoxide formation/so complete combustion occurs/avoid incompcombustion So that ${\rm CO_2}$ is produced	olete [1]
		CO does not dissolve/react with alkali	[1]
	(ii)	CO ₂ is acidic	[1]
	(iii)	volume of gaseous hydrocarbon 20 cm ³ volume of oxygen used = 90 cm ³ volume of carbon dioxide formed = 60 cm ³	[1] [1]
		no mark for 20 cm ³ of hydrocarbon.	
	(iv)	$2C_3H_6(g)/2CxHy(g) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$	[1]
		OR $C_3H_6(g) + 9/2O_2(g) \rightarrow 3CO_2(g) + 3H_2O(I)$	
		C_3H_6	[1]
		C ₃ H ₆ can be given in the equation for the second mark	
	(b) (i)	correct structural or displayed formula of another chlorobutane / dichlorobutane	ne / [1]
	(ii)	light / 200 °C / lead tetraethyl	[1]
	(iii)		[1]
		heat/high temperature / Temperature between 450 °C to 800 °C OR catalyst / named catalyst to give a simpler alkane and alkene	[1] [1]
		word equation or equation as example	[1]
		to make polymers / to increase petrol fraction / organic chemicals/petrochemicals	als / [1]