UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

-	rage	_	Maik Scheille. Teachers Version	Syllabus	rapei
			IGCSE – May/June 2011	0620	32
1	(i)	Rb/	Sr		[1]
	(ii)	I			[1]
	(iii)	Fe			[1]
	(iv)	Р			[1]
	(v)	Si			[1]
2	(a) (i)	no re	eaction		[1]
		for re	$+ \operatorname{Sn}^{2+} \to \operatorname{Fe}^{2+} + \operatorname{Sn}/2\operatorname{Fe} + 3\operatorname{Sn}^{2+} \to 2\operatorname{Fe}^{3+} + 3\operatorname{Sn}$ ealising that there would be a reaction shown by an attempation e.g. writing $\operatorname{Fe}_2\operatorname{Sn}$ etc. allow [1]	t to write an	[2]
		no re	eaction		[1]
	(ii)	All th	xide, nitrogen dioxide (accept nitogen(IV) oxide/dinitrogen aree for two ept correct formulae	tetroxide), oxyge	en [2]
		any	two correct products		[1]
	(b) (i)	tin			[1]
	(ii)		$^- \rightarrow O_2 + 2H_2O + 4e^-$ palanced allow [1]		[2]
	(iii)	sulfu	ric acid		[1]
	` '		ore reactive than iron/steel s reactive than iron/steel		[1] [1]
	for	ms po	rodes/reacts/loses electrons/is oxidised/is anodic/provic sitive ions (in preference to iron or steel) ORA n is cathodic for this mark.	les sacrificial p	protection/
	pre	eferen	I corrodes/reacts/rusts/loses electrons/is oxidised/is anocee to tin). ORA is cathodic for this mark	lic/forms positive	

Mark Scheme: Teachers' version

Page 2

Syllabus

<u> </u>				
3	(a) (i)	concentration of thiosulfate is proportional to volume of thiosulfate solution ad total volume is same in all experiments) / concentration of acid always the same	•	
		for comments based on amount / to make experiments fair / comparable allow	[1]	
	(ii)) 240 s	[1]	
	(iii)	decreases/reaction slower because concentration of thiosulfate decreases frequency/chances/rate of collisions decreases	[1] [1] [1]	
		one mark can be scored for less/smaller amount/smaller volume of thiosul collisions	fate / less	
	(b) rat	ate increases with temperature (or at 42 °C) ORA	[1]	
	-	articles/molecules/ions move faster or gain energy / ORA lon't accept reactants or atoms)	[1]	
	mo	ore collisions / ORA	[1]	
	(last mark is for qualification of the collisions) i.e. greater frequency / more per unit time/more often /greater chance/more likely/more rate/more effective/more successful/more with activation energy / ORA			
accept $2Fe_2O_3$ $C + C$		edox equation of Fe ₂ O ₃ + 3CO \rightarrow 2Fe + 3CO ₂ O ₃ + 3C \rightarrow 4Fe + 3CO ₂ + 3C \rightarrow 2Fe + 3CO \rightarrow 2Fe + 3CO \rightarrow 2Fe + 3CO	[1]	
	CaO +	cid/base equation + SiO₂ → CaSiO₃ CO₃ + SiO₂ → CaSiO₃ + CO₂	[1]	
	three more equations or comments carbon burns to form carbon dioxide this reaction is exothermic or produces heat carbon dioxide is reduced to carbon monoxide carbon monoxide reduces hematite to iron carbon reduces hematite to iron limestone removes silica which is an impurity to form slag which is a waste product limestone decomposes or symbol/word equation			

Mark Scheme: Teachers' version IGCSE – May/June 2011

Page 3

Syllabus 0620

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	32

5 (a)
$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2/Zn + 2H^+ \rightarrow Zn^{2+} + H_2$$
 [2]

marks are for correct reactants [1] correct products [1]

If ionic equation is given don't penalise SO_4^{2-} spectator ions on both sides

the next two marks score for

electrons are lost **AND** gained / oxidation no. or state/valency **both** increases and decreases / two correct half equations i.e. $Zn \rightarrow Zn^{2^+} + 2e^-$ and $2H^+ + 2e^- \rightarrow H_2$ [2]

- (c) zinc [1] cond it is the more reactive metal / it supplies electrons / it forms ions more readily than iron [1]
- (d) replace zinc with magnesium replace iron with copper use (more) concentrated sulfuric acid accept use a more concentrated acid / a more concentrated solution

any **two** [2]

			IGCSE – May/June 2011	0620	32
6	(a) (i)	equa	at which methanol formed by forward reaction als rate it is reacting in back reaction of forward reaction equals rate of back reaction allow [1]		[1] [1]
	(ii)	high Exp	lower/decreased temperature /higher/increased pressure lanations not needed but if they are given they must be cor ORE values of temperature and pressure	rect	[1] [1]
	(iii)		pressure can be used / lower pressure due to expense or not use a low temperature as rate would be too slow the ra		[1] economic [1]
	(b) (i)	este	r		[1]
	(ii)	soa	o/sodium stearate or any acceptable salt/glycerol		[1]
	(iii)	burr	ning both fuels forms carbon		[1]
		_	ving plants to make biodiesel removes carbon dioxide atmosphere		[1]
	(c) (i)	corr	ect SF of an octane		[1]
	(ii)	resu resu not colo	bromine (water)/bromine in an organic solvent alt octane remains brown/orange/yellow/red alt octane goes colourless/decolourises clear/discolours ur of reagent must be shown somewhere for [3] otherwise ept equivalent test using KMnO ₄ in acid or alkali	max [2]	[1] [1] [1]

Mark Scheme: Teachers' version

Page 5

Syllabus

		IGCSE – May/June 2011	0620	32
		1nbp around phosphorus 3nbp around each chlorine		[1] [1]
(b) (i)	PCl_3	$_3$ + 3H ₂ O \rightarrow 3HC l + H ₃ PO ₃		[1]
(ii)	mea	solutions same concentration sure pH/pH paper/Universal indicator ochloric acid lower pH		[1] [1] [1]
		urs of Universal indicator can be given as red <orange<yellore <math="" as="" hcl="" is="" long="" lower="" ph="" precise="" than="" values="">H_3PO_3</orange<yellore>	OW	
	add	Acid solutions same concentration magnesium or any named metal above Hydrogen in reac nesium	tivity series but	[1] not above
		um carbonate or any insoluble carbonate ochloric acid react faster/shorter time		[1] [1]
	mea	acid solutions same concentration sure electrical conductivity ochloric acid better conductor/bulb brighter		[1] [1] [1]
	add	acid solutions same concentration sodium thiosulphate ochloric acid forms precipitate faster/less time		[1] [1] [1]
(iii)	titrat secc	um hydroxide/sodium carbonate ion cond on correct reagent and mark scores for mention of titration /burette/pipette/indic erimental detail not required	cator.	[1] [1]
	any	named soluble calcium salt e.g. calcium chloride/nitrate/hyd	droxide	[1]
	prec	ipitation/filter/decant/centrifuge		[1]

Mark Scheme: Teachers' version

Page 6

7

Syllabus

IGCSE – May/June 2011 0620 32	Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
1000		IGCSE – May/June 2011	0620	32

(a) (i) (to avoid) carbon monoxide formation/so complete combustion occurs/avoid incomplete 8 combustion So that CO₂ is produced [1] CO does not dissolve/react with alkali [1] (ii) CO₂ is acidic [1] (iii) volume of gaseous hydrocarbon 20 cm³ volume of oxygen used = 90 cm³ [1] volume of carbon dioxide formed = 60 cm³ [1] no mark for 20 cm³ of hydrocarbon. (iv) $2C_3H_6(g)/2CxHy(g) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$ [1] OR ... $C_3H_6(g) + 9/2O_2(g) \rightarrow 3CO_2(g) + 3H_2O(I)$ C_3H_6 [1] C₃H₆ can be given in the equation for the second mark (b) (i) correct structural or displayed formula of another chlorobutane / dichlorobutane / polychlorobutane [1] (ii) light / 200 °C / lead tetraethyl [1] (iii) cracking is the decomposition/breaking down of an alkane/hydrocarbon/petroleum [1] heat/high temperature / Temperature between 450 °C to 800 °C OR catalyst / named catalyst [1] to give a simpler alkane and alkene [1] word equation or equation as example [1] to make polymers / to increase petrol fraction / organic chemicals/petrochemicals / hydrogen [1]

any four