MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31
Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0620	31

1 (a) F or B diffusion / fractional distillation
(b) A simple distillation
(c) D chromatography
(d) E filtration
(e) C evaporation
(f) B fractional distillation

2 (a) (i) photosynthesis or a photochemical reaction not an example, question requires a process not devices which convert light into electricity
(ii) cell
accept battery
not generator
(b) (i) correct formula
cond following marks conditional on correct formula
If covalent mark 1 only correct charges
$6 x$ and 20 around anion
do NOT penalise for incorrect coding
ignore electrons around potassium
(ii) correct formula

If ionic mark 1 only
cond
2 bp and 2 nbp around selenium
1 bp and 3 nbp around both chlorine atoms
(iii) the ionic compound
higher melting point / boiling point / less volatile
conducts when molten or aqueous, covalent compound does not
is soluble in water, covalent is not / ionic insoluble in organic solvents, covalent soluble in organic solvents
harder
any two
note there has to be comparison between the ionic compound and the covalent compound not density

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0620	31

(c) base
not alkali
accepts a proton
accepts hydrogen ion / H^{+}only [1]
proton and H^{+}[2]

3 (a) any four max 4
carbon forms carbon dioxide / carbon monoxide
this is a gas it escapes / blown out / diffuses
silicon forms silicon(IV) oxide / silica
/ silicon(IV) oxide present in impure iron
silicon(IV) oxide reacts with calcium oxide to form slag or calcium silicate
slag removed from surface
accept skimmed, syphoned, poured off
not tapped
$\max [4]$
accept correct formula or equations
not calcium oxide reacts with silicon
(b) (i) any sensible suggestion - harder/stronger/can be tailored for a specific use/more resistant to corrosion
not steel does not rust
(ii) mild steel - cars or any vehicle/bicycles/white goods/screws or nails/roof/bridges/tools/ buildings/ships/pipes/machinery etc.
stainless steel - chemical plants/cooking utensils/jewellery/cutlery/surgical equipment/ kitchen sinks/pipes/etc.
(c) (i) strong attractive forces / strong bonds / bonds hard to break / requires a lot of energy to break bonds
not between ions, not between positive and negative ions,
not between electrons
between positive ions and (negative) electrons / opposite charges attract
(ii) because the layers, lattice or rows of ions/cations
accept sheets of ions
not atoms / molecules / protons / nuclei
can move / slip / slide past each other

4 (a) (i) $2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$
not balanced only [1]
(ii) two reagents from named metal(s) more reactive than zinc/carbon monoxide
not hydrogen
(iii) they have different boiling points
cadmium will distil first then zinc leaving lead/lead distilled last

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0620	31

(b) for a high yield need low temperature
then rate would be too slow or uneconomic
a discussion of optimum temperature could score mark 1 and 2
presence of catalyst would increase rate (at same temperature)
does not alter the yield (at that temperature)
/ economic rate at lower temperature, therefore higher yield
higher pressure which would increase yield / rate
yield high enough / high pressure expensive
accept reverse arguments
note increase yield \equiv position of equilibrium to right

5 (a) (i) $2 \mathrm{Li}+2 \mathrm{HI} \rightarrow 2 \mathrm{LiI}+\mathrm{H}_{2}$
(ii) zinc carbonate + hydriodic acid \rightarrow zinc iodide + carbon dioxide + water
(iii) $\mathrm{MgO}+2 \mathrm{HI} \rightarrow \mathrm{MgI}_{2}+\mathrm{H}_{2} \mathrm{O}$
(b) reaction 1 is redox / Li/2 HI reaction
cond reason either oxidation number/state / electron transfer
(c) with hydriodic acid - iodine formed / goes dark brown / grey/black solid
not purple vapour not purple/black solution
with hydrobromic acid - bromine formed / goes orange / yellow / brown / reddish brown / red / brown vapour
note can accept brown for iodine provided bromine is different orange/brown etc.
(d) (i) the reaction is exothermic / reaction produces heat/energy
all the sodium hydroxide used up/neutralised / reaction has stopped
(ii) adding colder acid / no more heat produced
if not given in (d)(i) any comments such as "reaction has stopped" can gain mark
(iii) $1.33 / 1.3 / 1.3333\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$ scores both marks
not 1.34
for a correct method $-\mathrm{M}_{1} \mathrm{~V}_{1}$ / moles of $\mathrm{NaOH}=0.02$
with an incorrect answer only [1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0620	31

6 (a) (i) cracking / heat with catalyst
to make butane
butene reacts with steam/water / hydrated
accept heat and catalyst for cracking but if specified: 450 to $800^{\circ} \mathrm{C}$ zeolites / aluminosilicates / silica / aluminium oxide/alumina / china / broken pot / porcelain / chromium oxide
(ii) glucose / sugar changed to alcohol / ethanol
accept an unbalanced equation
(catalysed by) enzymes / yeast
(b) butanoic acid
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
hydrogen atoms omitted from ends of bonds, penalise once
(c) (i) ester
(ii) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$
ignore $\mathrm{CH}_{3} \mathrm{COOC}_{4} \mathrm{H}_{9}$
(iii) correct structural formula of butyl ethanoate showing all bonds

7 (a) metal A is magnesium
cond most reactive or fastest reaction
metal B is aluminium
cond faster reaction after removal of oxide layer / it would give more hydrogen / aluminium more reactive than zinc
metal C is zinc
zinc least reactive
NOTE MAX [5]
If you encounter different reasoning which is correct, please award the appropriate marks.
(b) for magnesium and zinc same volume of hydrogen
because both have valency of 2 / 1 mole of metal gives 1 mole of hydrogen / 1 mole of metal reacts with 2 moles of acid
bigger volume for aluminium because its valency is $3 / 1$ mole of metal gives 1.5 moles of hydrogen / 1 mole of metal reacts with 3 moles of acid

If you encounter different reasoning which is correct, please award the appropriate marks.
accept balanced equations
accept ionic charges as alternative to valency

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0620	31

8 (a) addition - polymer only product / only one product accept monomer has $\mathrm{C}=\mathrm{C}$
accept monomer and polymer have same empirical formula accept no loss of material in polymerisation
not only one monomer
condensation - polymer and water / small molecule formed
(b) $-\mathrm{CH}_{2}-\mathrm{CCl}_{2}-$
repeat unit correct
COND continuation
(c) $\mathrm{CH}_{2}=\mathrm{CHOOCCH}_{3}$
(d) $-\mathrm{OC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}-$

COND amide correct linkage
correct repeat units
continuation
not NH_{2} or COOH endings
[Total: 80]

