MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – May/June 2011	0620	31
1	(a)	F or	B	diffusion / <u>fractional</u> distillation		[1]
	(b)	A	:	simple distillation		[1]
	(c)	D	(chromatography		[1]
	(d)	Е	1	filtration		[1]
	(e)	С	(evaporation		[1]
	(f)	В	<u>1</u>	fractional distillation		[1]
2	(a)	.,	not a	osynthesis or a photochemical reaction an example, question requires a process devices which convert light into electricity		[1]
		. ,		ept battery generator		[1]
	(b)	()		ect formula		[1]
			If cov corre 6x ai do N	d following marks conditional on correct formula valent mark 1 only ect charges nd 2o around anion OT penalise for incorrect coding re electrons around potassium		[1] [1]
		(ii)	corre	ect formula		[1]
			cond 2 bp	ic mark 1 only 1 and 2 nbp around selenium and 3 nbp around both chlorine atoms		[1] [1]
			highe cond is so in org hard any f note comp		rganic solvents, o	[2]

	Page 3			Mark Scheme: Teachers' version S		Paper		
				IGCSE – May/June 2011	0620	31		
	(c)	bas	[1]					
			alkal epts a	[2]				
		acc						
		proton and H ⁺ [2]						
3	(a)	any four max 4						
-	(*)	carbon forms carbon dioxide / carbon monoxide						
				gas it escapes / blown out / diffuses rms silicon(IV) oxide / silica		[1] [1]		
				IV) oxide present in impure iron/) oxide reacts with calcium oxide to form slag or ca	alcium silicate	[1]		
		slag		[1]				
		accept skimmed, syphoned, poured off not tapped						
		acc	ept c	orrect formula or equations um oxide reacts with silicon		max [4]		
		not	Calci					
	(b)	(i)	any	sensible suggestion - harder/stronger/can be t	tailored for a spe	ecific use/more		
				stant to corrosion steel does not rust		[1]		
						.		
		(ii)		steel – cars or any vehicle/bicycles/white goods/s dings/ships/pipes/machinery etc.	screws or nails/roo	of/bridges/tools/ [1]		
			stair	nless steel – chemical plants/cooking utensils/jew	ellery/cutlery/surgi			
				hen sinks/pipes/etc.	chery/cuttery/surg	[1]		
	(c)	(i) strong attractive forces / strong bonds / bonds hard to break / requires a lo energy to break bonds				s a lot of [1]		
		not		between ions, not between positive and negative ic	ons,	[']		
			not	between electrons				
			betw	veen positive ions and (negative) electrons / opposition	te charges attract	[1]		
		(ii)		ause the <u>layers, lattice or rows</u> of <u>ions/cations</u>		[1]		
				ept sheets of ions atoms / molecules / protons / nuclei				
						[4]		
			Can	move / slip / slide past each other		[1]		
4	(a)	(i)	2Zn	$S + 3O_2 \rightarrow 2ZnO + 2SO_2$		[2]		
-	()	\ -/		palanced only [1]		[—]		
	(ii) two		two	reagents from named metal(s) more reactive than a	zinc/carbon monox	(ide [2]		
		not hydrogen		hydrogen				
		(iii) they have different boiling points			[1]			
		cadmium will distil first then zinc leaving lead/lead distilled last [1]						

Page 4			Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	31
(b	ther	n rate	yield need low temperature would be too slow or uneconomic ion of optimum temperature could score mark 1 an	id 2	[1] [1]
	doe	s not a	of catalyst would increase rate (at same temperate alter the yield (at that temperature) ic rate at lower temperature, therefore higher yield	ure)	[1] [1]
	-	-	essure which would increase yield / rate enough / high pressure expensive		[1] [1] max [4]
	accept reverse arguments note increase yield ≡ position of equilibrium to right				
5 (a	a) (i)	2Li +	\cdot 2HI \rightarrow 2LiI + H ₂		[1]
	(ii)	zinc o	carbonate + hydriodic acid \rightarrow zinc iodide + carbor	n dioxide + water	[1]
	(iii) MgO + 2HI \rightarrow MgI ₂ + H ₂ O				[1]
(b			is redox / Li/2HI reaction son either oxidation number/state / electron transfe	er	[1] [1]
(c	(c) with hyd		odic acid – iodine formed / goes <u>dark brown</u> / grey	/black solid	[1]
	not purp		e vapour not purple/black solution		
	with hyc / brown		obromic acid – bromine formed / goes orange / ye apour	llow / brown / redo	lish brown / red [1]
	note can accept brown for iodine provided bromine is different orange/brown				etc.
(d	d) (i)		eaction is exothermic / reaction produces heat/ene e sodium hydroxide used up/neutralised / reaction	07	[1] [1]
	• • •		ng colder acid / no more heat produced given in (d)(i) any comments such as "reaction ha	s stopped" can ga	[1] in mark
	nc for		/ 1.3 / 1.3333 (mol/dm ³) scores both marks .34 correct method – $M_1 V_1$ / moles of NaOH = 0.02 an incorrect answer only [1]		[2]

Page 5		;	Mark Scheme: Teachers' version	Syllabus	Paper	
		- J		IGCSE – May/June 2011	0620	31
6	(a)	to m bute acc alun		king / heat with catalyst ake butane one reacts with steam/water / hydrated ept heat and catalyst for cracking but if spec ninosilicates / silica / aluminium oxide/alumina / co omium oxide		
		(ii)	acce	ose / sugar changed to alcohol / ethanol ept an unbalanced equation alysed by) enzymes / yeast		[2] [1]
	(b)) butanoic acid CH ₃ -CH ₂ -CH ₂ -COOH hydrogen atoms omitted from ends of bonds, penalise once				[1] [1]
	(c)	(i)	este	r		[1]
		(ii)	C ₆ H igno	₁₂ O₂ ore CH₃COOC₄H9		[1]
		(iii)	corre	ect structural formula of butyl ethanoate showing all	bonds	[2]
7	(a)	a) metal A is magnesium cond most reactive of		is magnesium ost reactive or fastest reaction		[1] [1]
		metal B is aluminium cond faster reaction after removal of oxide layer / it would give more hydro more reactive than zinc				[1] Jen / aluminium [1]
		metal C is zinc zinc least reactive NOTE MAX [5]				[1] [1]
		lf yo	ou en	counter different reasoning which is correct, please	award the approp	riate marks.
	(b)	for	magn	nesium and zinc same <u>volume</u> of hydrogen		[1]
				both have valency of 2 / 1 mole of metal gives 1 mo ith 2 moles of acid	ole of hydrogen /	1 mole of metal [1]
		bigger volume for aluminium because its valency is 3 / 1 mole of metal hydrogen / 1 mole of metal reacts with 3 moles of acid		nole of metal give	es 1.5 moles of [1]	
		lf y	ou en	counter different reasoning which is correct, please	award the approp	riate marks.
				palanced equations		

accept ionic charges as alternative to valency

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	31
8	(a)	accept n accept n accept n	 polymer only product / only one product nonomer has C=C nonomer and polymer have same empirical formula to loss of material in polymerisation one monomer 		[1]
		condens	ation – polymer and water / small molecule formed		[1]
		condenie			[.]
	(b)	-CH ₂ – C			
	(0)	_	nit correct		[1]
		COND c	ontinuation		[1]
	(c)	CH ₂ =CHOOCCH ₃			[1]
	(d)) -OC(CH ₂) ₄ CONH(CH ₂) ₆ NH-			
	. ,	COND a	mide correct linkage		[1]
		correct re	epeat units tion		[1] [1]
		not NH ₂ or COOH endings			[']
					[Total: 90]
					[Total: 80]