MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 33 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2010	0620	33

- 1 In (a), (b) and (c), descriptions of chemical properties need not be detailed. If more than one answer is given in each section, mark the **first** one and ignore anything subsequent unless it contradicts what they have already written. No marks for reversing physical and chemical properties.
 - (a) properties should focus on a group 1 metal and not just metals in general

PHYSICAL soft / can be cut (with a knife) / low density / light / low melting point / (good) conductor (heat or electricity) / shiny (when freshly cut) / malleable / ductile / tarnishes [1]

CHEMICAL react with water (**not** steam) / (very) reactive / forms salts with halogens / react vigorously with acids (**ignore** concentration) / forms an alkaline or basic oxide / fixed oxidation state or oxidation number or valency of +1 / has one valency or outer shell electron **not** forms ionic compounds on its own. [1]

(b) properties should focus on a transition metal

2

PHYSICAL hard / high density / dense / high mp or bp / (good) conductor (heat or electricity) / strong / malleable / ductile / silver or grey or lustrous or shiny solid [1]

CHEMICAL more than one oxidation state or valency (**accept** many oxides) / forms coloured compounds or ions (**not** coloured on its own) / forms complex ions / behave as a catalyst / less reactive than group 1 [1]

(c)		YSICAL colourless <u>gas</u> / yellow <u>gas</u> : diatomic molecules	[1]
	forr stal allo acid	EMICAL most reactive halogen / very reactive / forms ionic fluorides / bonds with metal $n \text{ covalent}$ fluorides / bonds with non-metals / powerful oxidant / gains one electron (to ble) / fixed oxidation state or valency <u>of -1</u> ow decolourised when reacts with alkene) / forms F ⁻ ions / forms acidic oxides / forms d when reacted with hydrogen / hydride is acidic	be
(a)	(i)	enzymes are proteins / come from living organisms / biological (catalysts) not enzymes are living or natural	[1]
	(ii)	carbohydrates have 2H:1O ratio contain elements of water	[1] [1]
		contain water = [1] unless they state that carbohydrates contain water, this response scores 2 or 0	
(b)	cor	rect -O- linkage nd same correct monomer (this mark is lost if 2 different boxes are shown) nd continuation (i.e. bonds at both ends)	[1] [1] [1]
(c)	(i)	(concentration or amount or mass etc.) of starch decreases (with time)	[1]

- (i) (concentration etc.) of starch becomes zero / all starch gone [1] colour (intensity) indicates how much starch is present (can be inferred) [1]
 (ii) enzyme denatured / destroyed [1]
 - **not** enzymes killed / don't work / saliva denatured

Page 3				Paper
		IGCSE – May/June 2010	0620	33
(a) (i)	notj	just bromine decolourised		[1]
				[1]
(ii)	Br ₂ +	+ Na ₂ S \rightarrow 2NaBr + S		[1]
(iii)	<u>sulfi</u>	<u>de</u> (ion) / <u>sulfur</u> (ion) loses electrons		[1]
				[1]
(b) (i)				[1]
(ii)	•	•		[1]
(iii)	iron((II) hydroxide / ferrous hydroxide		[1]
(iv)	4Fe($(OH)_2 + O_2 + 2H_2O \rightarrow 4Fe(OH)_3$		[1]
(v)			n loss / Fe ²⁺ to Fe	e ³⁺ [1]
(vi)	zinc not j zinc zinc zinc zinc elect iron	corrodes not iron or zinc corrodes therefore iron do just zinc rusts is oxidised in preference to iron / reacts with oxygen and water in preference to iron / more reactive or electropositive than iron / forms ions more readily than iron or zinc loses electrons move on to iron / is cathode or zinc is anode /	1	y than iron / [3
	(a) (i) (ii) (iii) (b) (i) (i) (ii) (iv) (v)	 (a) (i) red I not yello brow (ii) Br₂ - (iii) look sulfin not brom (iii) look sulfin not brom (iii) look sulfin not brom (ii) hydr not (iii) iron((iii) iron((iv) 4Fee (v) oxid not vinc sinc sinc sinc sinc sinc sinc sinc s	 IGCSE – May/June 2010 (a) (i) red brown or orange to colourless not just bromine decolourised yellow (not dark) / white solid / precipitate / goes cloudy brown to yellow with no mention of solid/precipitate scor (ii) Br₂ + Na₂S → 2NaBr + S (iii) look for two comments sulfide (ion) / sulfur (ion) loses electrons not sodium sulfide bromine accepts them (b) (i) oxidation not redox (ii) hydrogen / H₂ not H (iii) iron(II) hydroxide / ferrous hydroxide (iv) 4Fe(OH)₂ + O₂ + 2H₂O → 4Fe(OH)₃ (v) oxidation number or state or valency increases / electron not gains oxygen (vi) sacrificial protection or zinc is sacrificed / zinc corrodes not iron or zinc corrodes therefore iron do not just zinc rusts zinc is oxidised in preference to iron / zinc reacts with oxygen and water in preference to iron / zinc more reactive or electropositive than iron / 	 (a) (i) red brown or orange to colourless not just bromine decolourised yellow (not dark) / white solid / precipitate / goes cloudy brown to yellow with no mention of solid/precipitate scores = [1] (ii) Br₂ + Na₂S → 2NaBr + S (iii) look for two comments sulfide (ion) / sulfur (ion) loses electrons not sodium sulfide bromine accepts them (b) (i) oxidation not redox (ii) hydrogen / H₂ not H (iii) iron(II) hydroxide / ferrous hydroxide (iv) 4Fe(OH)₂ + O₂ + 2H₂O → 4Fe(OH)₃ (v) oxidation number or state or valency increases / electron loss / Fe²⁺ to Fe not gains oxygen (vi) sacrificial protection or zinc is sacrificed / zinc corrodes not iron or zinc corrodes therefore iron doesn't / not just zinc rusts zinc is oxidiation preference to iron / zinc more reactive or electropositive than iron / zinc forms ions more readily than iron or zinc loses electrons more readil electrons move on to iron / zinc forms ions more readily than iron or zinc loses electrons more readil electrons move on to iron / iron is cathode or zinc is anode /

Page 4		ige 4 Mark Scheme: Teachers' version Syllabus IGCSE – May/June 2010 0620		Paper 33	
4	(a) (i)	diffe	e molecular formula / same number of C and H ato rent structural formula or structure e compound = [1]		[1] [1]
	(ii)	corre	ect formula of but-2-ene / methylpropene / methyl	cyclopropane	[1]
	(iii)	brov stay	nine / bromine water / aqueous bromine vn to colourless not clear s brown n ide loses the first mark only		[1] [1] [1]
		from	alkaline potassium manganate(VII) purple/pink to green/brown s purple		[1] [1] [1]
		from	acidic potassium manganate(VII) purple/pink to colourless not clear s purple		[1] [1] [1]
	• •	-	gh temperature (temperature need not be stated, bu above)	ut if it is stated it mu	ist be [1]
	zeo	olite / a	(need not be named, but if they are named accept a aluminosillicates / silicon dioxide) el/platinum	any metal oxide or	[1]
			omobutane rs given must be correct		[1]
	but but	tane tanol	putan-1-ol or butan-2-ol not but-1-ol / but-1-anol / bu	uthanol	[1] [1]
5 (a) fractional distillation				[1] [1]	
	(b) (i)	O=C) / oxygen(–)oxygen / H–H / hydrogen(–)hydrogen		[1]
	(ii)		/ oxygen(–)hydrogen / OH / bond between hydroge H-O-H	en and oxygen	[1]
	(iii)	endo	othermic.		[1]
	(c) (i)	/ no does	ollution / no CO / no CO ₂ / no oxides of nitrogen / <u>o</u> greenhouse gases / no global warming s not use up fossil fuels / water is not a finite resour ce of energy / hydrogen is renewable / available fro	rce / water is a rene	[1] wable
	(ii)	prob sma finite	ining hydrogen from water requires fossil fuels lems / limited range of vehicles available / gased Il amount of energy per unit volume / methane a e / lack of distribution network expensive / anything regarding safety / flammability	ous nature means s a source of stea	only produces

not expensive / anything regarding safety / flammability / explosiveness

	Page 5		j	Mark Scheme: Teachers' version	Syllabus	Paper		
				IGCSE – May/June 2010	0620	33		
6	(a)	(i)	Tℓ₂S			[1]		
		(ii)	T <i>l</i> C1	3		[1]		
	(b)	(b) filter / centrifuge / decant wash the precipitate dry <u>the solid</u> / heat <u>the solid</u> (in oven) / press between filter paper						
		all t two						
	(c)	(i)		r chloride / silver bromide ography / cameras / films / photo chromic lenses / s	sunglasses	[1] [1]		
		(ii)	put a use	ease distance between lamp and paper or put lamp a screen or translucent or semi-opaque material be a less powerful or low voltage or dim lamp / er the temperature				
			any	•		[2]		
	(d)	(i)	thali	um sulfate + ammonia + water		[1]		
		(ii)	not k	$DH + H_2SO_4 \rightarrow Tl_2SO_4 + 2H_2O$ Delanced = [1] rrect formula = [0]		[2]		
		(iii)	gree Fe ²⁺	n <u>precipitate or solid</u> (ignore shades of green but no + 2OH ⁻ → Fe(OH) ₂ accept multiples	ot bluey green etc.)	[1] [1]		
7	(a) sodium is expensive / difficult to obtain sodium (from sodium chloride) / prol electricity / hard to extract sodium / high energy costs in extraction of sodium					blems getting [1]		
	(b)	(i)	state bette	ce temperature / reduce melting point (to 900/10 ed, but if it is stated it must be within the range er conductivity / solid aluminium oxide does not con				
				ninium oxide is insoluble in water any two		[2]		
		(ii)	20 ²⁻	$\rightarrow O_2 + 4e^-$		[2] or [0]		
		(iii)	they	burn (away) / react with oxygen / form carbon dioxi	de	[1]		
	(c)	in p alu	orefere miniu	n formed / aluminium above hydrogen in reactivity s ence to Al^{3^+} / aluminium is more reactive than hydro m more reactive than carbon / carbon cannot reduc	gen e aluminium oxide /	[1] '		
		alu	miniu	m is higher than carbon in the reactivity series / carl m oxide / carbon doesn't <u>displace</u> aluminium son is essential for mark	oon doesn't <u>reduce</u>	[1]		

	Pa	age 6		Mark Scheme: Teachers' version	Syllabus	Paper		
				IGCSE – May/June 2010	0620	33		
B	(a)) (i) accept all metals excluding Group I (lithium is acceptable) not lead accept silver						
		(ii)		trite / nitrate(III) nitride			[1]	
	(b)	(i)		hermic reverse reaction is endothermic as the question ask	s about the forwa	ard reaction	[1]	
			high	d forward reaction favoured by low temperature / re temperature and mark only scores if exothermic is correct.	verse reaction fav	voured by	[1]	
		(ii)		tion of equilibrium to right / forwards / more product ause this side has smaller volume / fewer moles	s / more N ₂ O ₄ / lig	hter colour	[1] [1]	
	(c)	if th for a	e fina all otl	al answer is between 86–89% award all 4 al answer is between 66–67% award 3 marks (M _r of her answers marks can be awarded using the mar cessary		,	ing	
		nun mas mas	nber of ss of ss of	of moles of O_2 formed = 0.16/24 = 0.0067/0.0066 of moles of Pb(NO ₃) ₂ in the sample = 0.0133/0.013 one mole of Pb(NO ₃) ₂ = 331 g lead(II) nitrate in the sample = 4.4(1) g ge of lead(II) nitrate in sample = 88.3% (allow 88-	3 or 1/75		[4	
		mar	k ecf	in this question but not to simple integers				

mark **ecf** in this question but **not** to simple integers if mass of lead(II) nitrate > 5.00 only marks 1 and 2 available If divides by 32 (not 24) only last 3 marks can score consequentially