UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 32 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Mark Scheme: Teachers' version			Syllabus	Paper				
				IGCSE	E – May/June 201	10	0620	32			
į	In (a) , (b) and (c) , descriptions of chemical properties need not be detailed. If more than one answer is given in each section, mark the first one and ignore anything subsequent unless it contradicts what they have already written. No marks for reversing physical and chemical properties.										
((a) properties should focus on a group 1 metal and not just metals in general										
		PHYSICAL soft / can be cut (with a knife) / low density / light / low melting point / (good) conductor (heat or electricity) / shiny (when freshly cut) / malleable / ductile / tarnishes [1]									
		vigo oxid	<u>rousl</u> ation	AL react with wate y with acids (ign state or oxidation s ionic compounds	ore concentration number or valence	n) / forms an	alkaline or bas	c oxide / fixed			
((b)	prop	ertie	s should focus on a	a transition metal						
				AL hard / high dens nalleable / ductile /				at or electricity) / [1]			
				AL more than one ds or ions (not col		• ,	,				
				ctive than group 1	oured on its own)	/ Iomis compi	ex ions / benave a	is a catalyst [1]			
((c) PHYSICAL colourless gas / yellow gas not diatomic molecules										
		form stab allo v acid	cov le) / 1 w de whe	AL most reactive halent fluorides / boixed oxidation state colourised when reacted with hydroping agent	onds with non-met e or valency <u>of –1</u> eacts with alkene)	als / powerful	oxidant / gains on	e electron (to be			
2 (a	(a)		-	mes are proteins / enzymes are living	_	organisms / bi	ological (catalysts) [1]			
				ohydrates have 2H ain elements of wa				[1] [1]			
				ain water = [1] ss they state that c	arbohydrates con	tain water, this	response scores	2 or 0			
(• •	con	d sar	O- linkage ne correct monome tinuation (i.e. bond	•	st if 2 different	boxes are shown)	[1] [1] [1]			
((c)		(con	centration or amou centration etc.) of s ur (intensity) indica	starch becomes ze	ero / all starch	gone	[1] [1] [1]			
		(ii)	enzv	me <u>denatured / de</u>	stroved			[1]			

			IGCSE – May/June 2010	0620	32
3	(a) (i)		brown or orange to colourless		[1]
		yello	just bromine decolourised bw (not dark) / white solid / precipitate / goes cloudy vn to yellow with no mention of solid/precipitate sco		[1]
	(ii)	Br ₂	+ Na₂S → 2NaBr + S		[1]
	(iii)	<u>sulfi</u> not	for two comments <u>de</u> (ion) / <u>sulfur</u> (ion) loses electrons sodium sulfide		[1]
		<u>bror</u>	nine accepts them		[1]
	(b) (i)	,	ation redox		[1]
	(ii)	hydi not	rogen / H ₂ H		[1]
	(iii)	iron	(II) hydroxide / ferrous hydroxide		[1]
	(iv	4Fe	$(OH)_2 + O_2 + 2H_2O \rightarrow 4Fe(OH)_3$		[1]
	(v)		ation number or state or valency increases / electro gains oxygen	n loss / Fe ²⁺ to Fe	e ³⁺ [1]
	(vi)	zinc not zinc zinc zinc zinc elec	rificial protection or zinc is sacrificed / corrodes not iron or zinc corrodes therefore iron do just zinc rusts is oxidised in preference to iron / reacts with oxygen and water in preference to iron more reactive or electropositive than iron / forms ions more readily than iron or zinc loses electrons move on to iron / is cathode or zinc is anode /	1	y than iron /

Mark Scheme: Teachers' version

Syllabus

Paper

[3]

Page 3

any three

	Page 4			Mark Scheme: Teachers' version	Paper			
				IGCSE – May/June 2010	Syllabus 0620	32		
4	(a)	(i)	diffe	same molecular formula / same number of C and H atoms different structural formula or structure same compound = [1]				
		(ii)	corre	ect formula of but-2-ene / methylpropene / methyl c	yclopropane	[1]		
	((iii)	brow stays	nine / bromine water / aqueous bromine on to colourless not clear s brown n ide loses the first mark only		[1] [1] [1]		
			from	alkaline potassium manganate(VII) purple/pink to green/brown s purple		[1] [1] [1]		
			from	acidic potassium manganate(VII) purple/pink to colourless not clear s purple		[1] [1] [1]		
	(b)			gh temperature (temperature need not be stated, but above)	t if it is stated it m	ust be [1]		
		zeo	lite / a	need not be named, but if they are named accept a aluminosillicates / silicon dioxide) el/platinum	ny metal oxide or	[1]		
	(c)		2)dibromobutane umbers given must be correct					
		but but	ane anol	outan-1-ol or butan-2-ol not but-1-ol / but-1-anol / bu	thanol	[1] [1]		
5	(a)		ctional illatio			[1] [1]		
	(b)	(i)	0=0	/ oxygen(–)oxygen / H–H / hydrogen(–)hydrogen		[1]		
		(ii)		/ oxygen(–)hydrogen / OH / bond between hydrogei H-O-H	n and oxygen	[1]		
	((iii)	endo	othermic.		[1]		
	(c)	(i)	/ no does	ollution / no CO / no CO ₂ / no oxides of nitrogen / on greenhouse gases / no global warming s not use up fossil fuels / water is not a finite resourc ce of energy / hydrogen is renewable / available from	e / water is a rene	[1] ewable		
		(ii)	prob smal finite	ining hydrogen from water requires fossil fuels lems / limited range of vehicles available / gaseo ll amount of energy per unit volume / methane as e / lack of distribution network expensive / anything regarding safety / flammability	us nature means a source of stea	only produces		

			IGCSE – May/June 2010	0620	32
(a)	(i)	Tl ₂ S			[1
(-,	``				
	(ii)	T <i>l</i> C <i>l</i>	3		[1
(b)	filte	r / cei	ntrifuge / decant		
			precipitate olid / heat <u>the solid</u> (in oven) / press between filter p	naner	[3
	-			Барсі	Į.
			stated but not in correct order = [2] If three stated in any order = [1]		
(c)	(i)		r chloride / silver bromide ography / cameras / films / photo chromic lenses / s	cunalaceae	[1 [1
		•		· ·	[1
	(ii)		ease distance between lamp and paper or put lamp a screen or translucent or semi-opaque material be		
			a less powerful or low voltage or dim lamp / r the temperature		
		any	·		[2
(d)	(i)	thali	um sulfate + ammonia + water		[
	(ii)		$0H + H2SO4 \rightarrow Tl2SO4 + 2H2O$ coalanced = [1]		[2
			rect formula = [0]		
((iii)	gree	n <u>precipitate or solid</u> (ignore shades of green but n	ot bluey green etc.)	[′
		Fe ²⁺	+ 2OH ⁻ → Fe(OH) ₂ accept multiples		[′
(a)	sod	ium i	s expensive / difficult to obtain sodium (from soc	dium chloride) / prob	olems aettin
(α)			/ hard to extract sodium / high energy costs in extr		, joins gouin ['
(b)	(i)		ce temperature / reduce melting point (to 900/10 ed, but if it is stated it must be within the range	000°C) temperature	need not b
			er conductivity / solid aluminium oxide does not con ninium oxide is insoluble in water any two	duct	[2
	/:: \				
	(11)	20-	\rightarrow O ₂ + 4e ⁻		[2] or [
	(iii)	they	burn (away) / react with oxygen / form carbon dioxi	ide	[
(c)	hvd	roger	n formed / aluminium above hydrogen in reactivity s	eries / H ⁺ discharge	ı
(0)	in p	refere	ence to A $\it l^{3^+}$ / aluminium is more reactive than hydro	gen	' [ˈ
			m more reactive than carbon / carbon cannot reduc m is higher than carbon in the reactivity series / carl		
	aluı	miniu	m oxide / carbon doesn't <u>displace</u> aluminium on is essential for mark		[
	5011	iparis	on to occordiantor many		

Mark Scheme: Teachers' version

Page 5

Syllabus

Paper

	Page 6			Mark Scheme: Teachers' version Syllabus		Paper				
				IGCSE – May/June 2010	0620	32				
}	(a)	` '		ept all metals excluding Group I (lithium is acceptablead accept silver	le)		[1			
	(trite / nitrate(III) nitride			[1			
	(b)	(i) exothermic not reverse reaction is endothermic as the question asks about the forward reaction cond forward reaction favoured by low temperature / reverse reaction favoured by								
			high	temperature and mark only scores if exothermic is correct.	verse reaction ra	vouled by	[1			
	(tion of equilibrium to right / forwards / more products ause this side has smaller volume / fewer moles	s / more N ₂ O ₄ / lig	ghter colour	[1 [1			
	(c) if the final answer is between 86–89% award all 4 if the final answer is between 66–67% award 3 marks (M _r of 32 must have been used) for all other answers marks can be awarded using the mark scheme as below and a ecf if necessary									
		num mas: mas:	ber of of soft of the soft of	of moles of O_2 formed = 0.16/24 = 0.0067/0.0066 of moles of Pb(NO ₃) ₂ in the sample = 0.0133/0.013 one mole of Pb(NO ₃) ₂ = 331 g lead(II) nitrate in the sample = 4.4(1) g ge of lead(II) nitrate in sample = 88.3% (allow 88-	3 or 1/75		[4			
		if ma	ass o	f in this question but not to simple integers of lead(II) nitrate > 5.00 only marks 1 and 2 availables by 22 (and 24) are the 22 availables.	9					

If divides by 32 (not 24) only last 3 marks can score consequentially

8