MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Pag	e 2	Mark Scheme: Teachers' version	Syllabus	Paper				
			IGCSE – May/June 2010	0620	31				
1	(i)	sulfur			[1]				
	(ii)	iodine			[1]				
	(iii)	coppe	r ignore (II)		[1]				
	(iv)	calciur	n		[1]				
	(v)	helium			[1]				
			me of a compound t correct symbols						
2	(i)		methane		[1]				
		move	biggest molecular mass / biggest mass of one mole / slowest / heaviest molecule / highest density	its molecules	[1]				
		ignore	t atomic mass if correct numerical value given it is the heaviest (gas) / biggest molecule						
		not at	t particles or molecules						
	(ii)		n dioxide / calcium carbonate		[1]				
		not me water			[1]				
	(!!!)		n chloride / brine / seawater		[1]				
	(111)		lorine water		[1]				
		200°C	ight / UV / heat / high temperature if numerical value / lead tetraethyl	given about	[1]				
	(5.4)	not wa			[4]				
	not from		n and nitrogen (in air) om fuel, negates mark 1 of biological distribution (in an air and air and air		[1]				
		. ,	at high temperatures / lightning / in engine mbustion or exhaust, negates mark 2		[1]				
	(v)	(v) $2O_3 \rightarrow 3O_2$ not balanced = [1]							
		not ba	ianced = [1]						
3	(a)	(i) bub	bles / effervescence / hydrogen / gas pushes up / lif	ts metal	[1]				
			s not react with <u>acid</u> / zinc and iron react with <u>acid</u> just unreactive		[1]				
	(b)	(i) with	n copper / first experiment		[1]				
		(ii) cop	per acts as a <u>catalyst</u>		[1]				
	(c)	(i) sma	aller gradient		[1]				
	-		rate is slower						
		(ii) san	ne final volume of hydrogen / same level (on graph)		[1]				

	Page 3			Mark Scheme: Teachers' version IGCSE – May/June 2010	Syllabus	Paper					
				0620	31						
	(d)	incr fast	ease ter / p	ture / heat e temperature – reaction faster particles have more e particles collide more frequently / more particles have e excited							
		acc	accept arguments for a decrease in temperature								
		powdered greater surface area greater collision rate / more particles exposed (to acid) any two									
		not	CONC	centration / light / catalyst / pressure							
4	(a)	(i)	etha CH₃	anol -CH2-OH		[1] [1]					
			CH ₃ inde	oanoic acid -CH₂-COOH ependent marking, no ecf ept C₂H₅ – HO		[1] [1]					
		(ii)	not	e of compound – salt / sodium carboxylate / alkanoate soap / sodium stearate etc – soap / cleaning / detergent	9	[1] [1]					
		(iii)	teryl	lene / PET / Dacron / diolen / mylar / crimplene		[1]					
	(b)	(i)	poly	amide / amide / peptide / polypeptide		[1]					
		(ii)	con	ect amide linkage <u>NHCO then CONH</u> d to mark 1, 2 monomers (different shading in box) d continuation (to ONE correct linkage)		[1] [1] [1]					
			only con	nylon 6 one linkage – NHCO d only one monomer d continuation (to correct linkage)		[1] [1] [1]					
		(iii)	mea con	locating agent asure distance travelled by sample / travelled by solve d this is R _f = 0.5 nark 3, either mark 1 or mark 2 must be awarded	ent front	[1] [1] [1]					
			com	ept run a chromatogram of glycine [1] pare with sample ne position [1] max [2]							

Page 4			_	Mark Scheme: Teachers' version	Syllabus	Paper				
				IGCSE – May/June 2010	0620	31				
5	(a)	(i)	mac all a	[1]						
			atom	ns / <u>all</u> strong bonds		[1]				
		 (ii) jewellery / drilling / cutting / engraving / cutting edges in scalpels mark first use offered 								
		(iii) layer structure / sheets								
		(- <i>)</i>	mole	[1]						
			laye	rs can slide (over each other)		[1]				
		(iv)		cant / pencils / electrodes k first use offered		[1]				
	(b)	 b) (i) 4e between carbon and oxygens 2 non-bonding pairs on both oxygens 								
		cond correct coding – only scored if marks 1 and 2 awarded ignore O ₂ in atom								
		(ii)		[1] [1]						
			mus	t refer to diagram not valencies or electron distribut	ions					
		(iii)	SiO ₂	has higher mp or bp is a solid, CO_2 is a gas (at rtp) on both are solids) then SiO_2 is harder						
			has	higher density						
			-	insoluble, CO ₂ soluble two , comparison needed		[2]				
6	(a)	<u>rate</u>	in constant	[1]						
		con acc	ain constant	[1]						
	(b)	 b) endothermic cond favoured by high temperatures 								
		CON	[1]							
	(c)	(i)		e to left d bigger volume / more moles etc		[1] [1]				
				ot insist on "gas"						
		[1]								

	Page \$				I	Mai		heme			sion			Syllabus	6	Pa	aper	
		IGCSE – May/June 2010					0620			31								
7	(a)	a transition element has more than one oxidation state or valency accept different oxidation states							[1]								
	(b)	 by removing oxygen concentration of O₂ decreases prevents the back reaction / equilibrium shifts to right 						-	1] 1]									
	(c)	 (c) oxidation number reduced (from (+) 4 to 0) accept accepts electrons or accepts four electrons if number given must be 4 						[1	1]									
	(d)	(d) low density / lightweight / light						[^	1]									
		propellers / fittings on ships / inert anodes in electrolysis / hip replacements / ship building / chemical plants / cathodic protection / diving equipment					[′	1]										
	(e)	(i)	(i) percentage of oxygen = 31.6%					[^	1]									
		(ii) calculate the number of moles of atoms for each element																
		number of moles of Ti = 31.6/48 = 0.66																
		number of moles of O = 31.6/16 = 1.98 accept 2 both correct for one mark				[′	1]											
		(iii) the simplest whole number ratio for moles of atoms:																
		Fe : Ti : O 1 1 3						[´	1]									
		(iv)	mus	t be	who	le r		cept T ers fro		ancel	led nu	mber	rs from	n (iii)			[′	1]

	Page 6	Mark Scheme: Teachers' version	Syllabus	Paper	
		IGCSE – May/June 2010	0620	31	
5	same ch same fur physical common	eneral formula emical properties nctional group properties vary in predictable way methods of preparation tive members differ by CH ₂			
	any two			[2	

any **two** mark first two

ignore others unless it contradicts a point which has been awarded a mark

(b) (i) 2HCOOH + CaCO ₃ → Ca(HCOO) ₂ + CO ₂ + H ₂ O not balanced = [1]	[2]
 (ii) zinc + methanoic acid → zinc methanoate + hydrogen [1] for each product 	[2]
(iii) protected by <u>oxide</u> layer	[1]
(c) butanoic acid CH ₃ -CH ₂ -CH ₂ -COOH / C ₄ H ₈ O ₂ / C ₃ H ₇ COOH / C ₄ H ₇ OOH C ₂ H ₄ O mark ecf to molecular formula	[1] [1] [1]