

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	
CHEMISTRY		0620/02
Paper 2		May/June 2009
	1	hour 15 minutes
Candidates answer on the Question Paper.		
No Additional Materials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the periodic table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
Total		

This document consists of 15 printed pages and 1 blank page.

1 (a) Choose from the list of compounds to answer questions (i) to (v).

For
Examiner's
Use

	calcium carbo	nate	carbon dioxi	de h	ydrogen chloride	
	iron(III) oxide	lead(II) bro	omide	methane	sodium hydroxid	le
Ea	ch compound can be	used once,	more than one	ce or not at	all.	
Na	me the compound wh	nich				
(i)	is a transition metal	compound,				
						[1]
(ii)	produces brown fur	nes at the ar	ode when ele	ctrolysed,		
						[1]
(iii)	is used to manufact	ture lime,				
						[1]
(iv)	dissolves in water to	o form an alk	aline solution	,		
						[1]
(v)	is the main constitu	ent of natura	l gas.			
						[1]

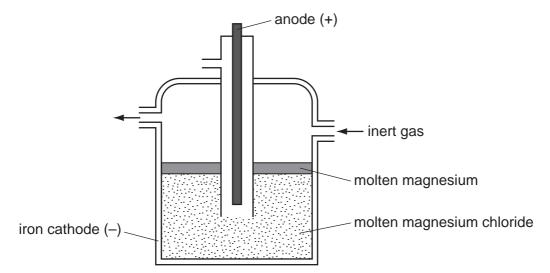
(b)	At a	a high temperatur	re iron(III)	oxide	is reduc	ed by	carb	on.		
		Fe	e ₂ O ₃ +	3C		2Fe	+	3CO		
	(i)	Explain how the	equation	shows	s that iro	n(III) o	xide	is reduced by o	carbon.	
										[1]
	(ii)	Complete these	sentence	s abou	ut the ext	raction	n of	iron using words	s from the list.	ı
		bauxite	blas	st	conv	erter		haematite	lime	
		lime	stone		sar	nd		sl	ag	
		lime	estone		sar	nd		sl	ag	
		lime							_	
		Iron is extracted	I from						ore with	
		Iron is extracted	I from		in	а <u></u>		by mixing the	ore with furnace	
		coke and The iron ore is r	I from	iron a	in and impu	a		by mixing the	ore with furnace	

2 The table shows some observations about the reactivity of various metals with dilute hydrochloric acid.

For Examiner's Use

metal	observations
calcium	many bubbles produced rapidly with much spitting
copper	no bubbles formed
iron	a few bubbles produced very slowly
magnesium	many bubbles produced rapidly with no spitting

(a) Put these metals in order of their reactivity.


most reactive —		→	least reactive	;
				[1]

(b) Zinc is between iron and magnesium in its reactivity.

Suggest what observations are made about how fast the bubbles are produced when zinc reacts with dilute hydrochloric acid.

(c) Magnesium is extracted by the electrolysis of molten magnesium chloride.

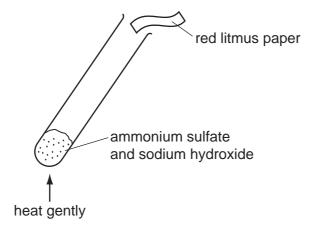
(i) What information in the diagram suggests that magnesium is less dense than molten magnesium chloride?

[1

(ii)	Suggest whits oxide wi		to be extracted by e	lectrolysis rather than by heating	J
				[1]]
(iii)	Suggest w magnesiun	=	ert gas is blown o	over the surface of the molten	1
				[1 _.]
(iv)	State the n	ame of a gaseous e	element which is ine	rt.	
				[1]]
	some old ma gnesium.	ignesium manufacti	ıring plants, coal ga	s is blown over the surface of the)
	•	the main substance	s in coal gas.		
	carbo	n monoxide	ethene	hydrogen	
		hydroge	n sulfide n	nethane	
(i)	Draw the s	tructure of ethene s	howing all atoms an	d bonds.	
(i)	Draw the s	tructure of ethene s	howing all atoms an	d bonds.	
(i)	Draw the s	tructure of ethene s	howing all atoms an	d bonds.	
(i)	Draw the s	tructure of ethene s	howing all atoms an	d bonds.	
(i)	Draw the s	tructure of ethene s	howing all atoms an	d bonds.	
(i)	Draw the s	tructure of ethene s	howing all atoms an	d bonds.	1
(i) (ii)					
	Suggest tv			[1]	
	Suggest tw the list.			[1]	
	Suggest tw the list. substance			[1]	

[Turn over www.theallpapers.com

(e)		rbon monoxide can be removed from coal gas by mixing it with steam and pass mixture over a catalyst of iron(III) oxide at 400 °C.	ing
		$CO + H_2O \rightleftharpoons CO_2 + H_2$	
	(i)	Write a word equation for this reaction.	
			[1]
	(ii)	What does the symbol ⇌ mean?	
			[1]
	(iii)	Iron(III) oxide reacts with acids to form a solution containing iron(III) ions. Describe a test for aqueous iron(III) ions.	
		test	••••
		result	
			[2]


[Total: 13]

	roleum is a mixt rol, paraffin and d		ibons which can be	Soparatou	into tractions suc	JII 40
(a)	State the name	of the process ι	used to separate thes	e fractions.		
(h)	Name two other	- franting which	are obtained from a			 [1]
(D)			are obtained from pe			LO.
			and			<u>.</u> [2
(c)	Give one use fo	r the paraffin fra	action.			
				•••••		[1
(d)	•	•	ed from petroleum are ctures are alkanes?	e alkanes.		
	Α	В	С		D	
	H H—C—H 	H C=C	H H H C — (0—н	H H H H—C—C—C	—F
	Н	Н	н н		н н н	
	Н	Н	н н		н н н	
			o complete the followi			<u>.</u> [1]
	Use words from	the list below to		ng sentence	······································	
	Use words from	the list below to	complete the followi	ng sentence	······································	
	Use words from ethane reacti	the list below to ethene ive	complete the followi	ng sentence	oxygen water	[1
	Use words from ethane reacti	the list below to ethene ive	complete the following hydrogen unreactive	ng sentence nitrogen	oxygen water but they	[1
(e)	Use words from ethane reacti	the list below to ethene ive	hydrogen unreactive are generally to form carbon dioxi	ng sentence nitrogen	oxygen water but they	[1
(e)	Use words from ethane reacti Alkanes such as be burnt in	the list below to ethene ive	hydrogen unreactive are generally to form carbon dioxi	ng sentence nitrogen	oxygen water but they	[1 [4
(e)	Use words from ethane reacti Alkanes such as be burnt in Alkanes are sate What do you und (i) saturated,	the list below to ethene ive	hydrogen unreactive are generally to form carbon dioxi	ng sentence nitrogen	oxygen water but they	[1 [4
(e)	Use words from ethane reacti Alkanes such as be burnt in Alkanes are sate What do you und (i) saturated,	the list below to ethene ive	hydrogen unreactive are generally to form carbon dioxi	ng sentence nitrogen	oxygen water but they	[1 [4

4 This question is about some compounds of nitrogen.

For Examiner's Use

A mixture of ammonium sulfate and sodium hydroxide was warmed in a test-tube. The gas was tested with moist red litmus paper.

(a)	State t	ne name	of the	gas	released
-----	---------	---------	--------	-----	----------

Г1	. 1
 Γ.	1

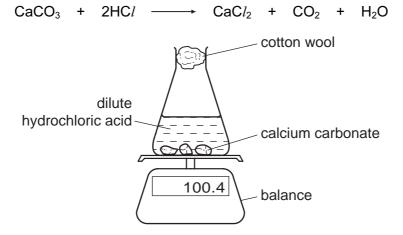
(b) State the colour change of the litmus paper.

Г1	1
 •	-

(c) Complete the word equation for the reaction of ammonium carbonate with hydrochloric acid.

ammonium	+	hydrochloric	 	+	 +	
carbonate		acid				
						[3]

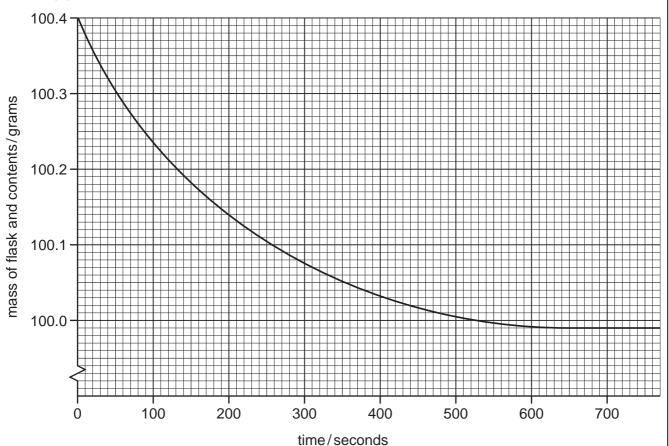
- (d) Ammonium salts such as ammonium nitrate, NH₄NO₃ and ammonium chloride NH₄C*l* are used as fertilisers.
 - (i) Explain why farmers need to use fertilisers.


[1]

(ii) Explain why ammonium nitrate is a better fertiliser than ammonium chloride.

	(iii) Calculate the relative formula mass of ammonium nitrate.		For Examiner's Use
		[1]	
(e)	When ammonium nitrate is heated nitrogen(I) oxide is given off. Nitrogen(I) oxide relights a glowing splint. Name one other gas which relights a glowing splint.		
		[1]	
(f)	State one harmful effect of nitrogen oxides on the environment.		
		[1]	
	[Total:	10]	

5 A student used the apparatus shown below to investigate the rate of reaction of calcium carbonate with dilute hydrochloric acid.


For Examiner's Use

(a)	Use the information in the equation to suggest why the mass of the flask and contents
	decreases with time.

[1]	

(b) The graph shows how the mass of the flask and its contents changes with time.

	(i)	At what time was the reaction just complete?	For
		[Examiner's Use
	(ii)	On the graph, mark with an ${\bf X}$ the point where the speed (rate) of reaction wa fastest.	ns 1]
	(iii)	The student repeated the experiment but altered the concentration of th hydrochloric acid so that it was half the original value. In both experiments calciur carbonate was in excess and all other conditions were kept the same.	
		On the graph on page 10, draw a curve to show how the mass of the flask an contents changes with time when hydrochloric acid of half the concentration wa used.	
(c)	Hov	w does the speed (rate) of this reaction change when	
	(i)	the temperature is increased,[1]
	(ii)	smaller pieces of calcium carbonate are used? [1]
(d)	Cor	mplete the following sentence using words from the list.	
	С	ombustion expansion large rapid slow small	
	In fl	our mills there is often the risk of an explosion due to the rapid	
	of tl	he very particles which have a very	
		surface area to react.	3]
(e)	Cel	ls in plants and animals break down glucose to carbon dioxide and water.	
		glucose + oxygen ── carbon dioxide + water	
	(i)	State the name of this process.	
		[1]
	(ii)	In this process enzymes act as catalysts. What do you understand by the term catalyst?	
		[1]
		[Total: 12	21

Bro	Bromine is an element in Group VII of the Periodic Table.						
(a)) Write the formula for a molecule of bromine.						
(b)	Complete the diagram	holow to about the arrangem	[1]				
(0)	bromine.	below to show the arrangen	nent of the molecules in liquid				
	represents a bro	omine molecule					
			[2]				
(c)	air. After two minutes bro	l amount of liquid bromine in the same and the same in the same and the same in the same i	he bottom of a sealed gas jar of ove the liquid surface. After one ut the gas jar.				
	liquid	e					
	start	after 2 minutes	after				
	Use the kinetic particle th	eory to explain these observat	ions.				
			[3]				

6

(d)	Magnesium salts are colourless but Group VII elements are coloured. An aqueous solution of magnesium bromide reacts with an aqueous solution of chlorine.						
	ma	gnesium bromide +	chlorine —	→ magnesium chl	oride + bromine		
	Sta	te the colour change i	n this reaction.				
					[2]		
(e)		olution of magnesium lain why there is no re		react with iodine.			
					[1]		
(f)	The	structures of some c	ompounds conta	aining bromine are	shown below.		
		Α	В	С	D		
	(Na		H—Br	F_F	Br^{-} Br^{-} Br^{-} Br^{-} Zn^{2+}		
	(Na			Br -	Br Br Br Br		
	Br			F	Zn^{2+} Zn^{2+}		
	(i)	Write the simplest fo	rmula for the sul	ostance with structu	ıre A.		
					[1]		
	(ii)	State the name of the	e substance with	n structure D .			
					[1]		
	(iii)	State the type of bor	iding within a mo	olecule of structure	c		
,	(,	Otato the type of bor	iding within a me		[1]		
	(iv)	Which two structures	s are giant struc	tures?			
				and	[1]		
	(v)	Why does structure	A conduct electr	icity when it is molt	en?		
					[1]		
					[Total: 14]		

Пу	ydrogen chloride can be made by burning hydrogen in chlorine.		For Examiner's
(a)) Complete the equation for this reaction.		Use
	H_2 + HCl	[2]	
(b)	Draw a dot and cross diagram for a molecule of hydrogen chlorid Show all the electrons.	e.	
	use \mathbf{o} for an electron from a hydrogen atom use \mathbf{x} for an electron from a chlorine atom		
		[2]	
(c)	Hydrochloric acid is formed when hydrogen chloride gas dissolve Suggest the pH of hydrochloric acid. Put a ring around the correct answer.	es in water.	
			l
	pH 1 pH7 pH9	pH 13 [1]	
(d)	pH 1 pH7 pH9 I) Complete the equation for the reaction of hydrochloric acid with z	[1]	
(d)	Complete the equation for the reaction of hydrochloric acid with z	[1]	
	Complete the equation for the reaction of hydrochloric acid with z	[1] tinc. [1]	
	 Complete the equation for the reaction of hydrochloric acid with z zinc + hydrochloric acid	[1] cinc. [1] com a solution of zinc	
	 Complete the equation for the reaction of hydrochloric acid with z zinc + hydrochloric acid zinc chloride + Describe how dry crystals of zinc chloride can be obtained from chloride. 	[1] tinc. [1] com a solution of zinc	
	 Complete the equation for the reaction of hydrochloric acid with z zinc + hydrochloric acid → zinc chloride + Describe how dry crystals of zinc chloride can be obtained from chloride. 	[1] tinc. [1] com a solution of zinc	
	zinc + hydrochloric acid → zinc chloride + Describe how dry crystals of zinc chloride can be obtained fr chloride.	[1] tinc. [1] com a solution of zinc	
(e)	zinc + hydrochloric acid → zinc chloride + Describe how dry crystals of zinc chloride can be obtained fr chloride. A student electrolysed molten zinc chloride.	[1] tinc. [1] com a solution of zinc [2]	
(e)	Zinc + hydrochloric acid → zinc chloride + Describe how dry crystals of zinc chloride can be obtained from chloride. A student electrolysed molten zinc chloride. State the name of the product formed at	[1] tinc. [1] com a solution of zinc [2]	

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	Neon 10 Argon 18 Argon 18	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	VII		19 Fluorine 9 35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	IN			79 Se Selenium 34	Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Mendelevium
	>		s sn	AS Asenic	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	//		Carbon 6 28 Silcon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	
	=	≡	E	70 Ga Gallium	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66	Cf Californium 98
		'		65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	
				64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium 96
Group				59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Gre				59 Cobalt	103 Rh Rhodium 45	192 Ir Indium 77		Sm Samarium 62	Pu Plutonium
		1 Hydrogen		56 Fe Iron	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Np Neptunium 93
				Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
				Cr Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium	232 Th Thorium
				48 Ti Titanium 22	2 Zr Zirconium 40	178 Ha fnium * 72			nic mass Ibol nic) number
				Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 *	227 AC Actinium 89	d series series	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Beryllium 4 24 Mg Magnesium 12	Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	<i>a</i> × <i>a</i> ∠
	_		7 Lithium 3 23 23 Na Sodium 11	39 X Potassium	Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.