As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Question Paper	Mark Scheme	Principal Examiner's Report
Introduction	Introduction	Introduction
First variant Question Paper	First variant Mark Scheme	First variant Principal Examiner's Report
Second variant Question Paper	Second variant Mark Scheme	Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark So	cheme: Teachers' version	Syllabus	Paper			
				IGO	CSE – May/June 2009	0620	31			
1	(a)	(a) (i) basic set up – container and chromatography paper								
			sam	ple clearly abov	e level of solvent		[1]			
			(orig	inal mark must l	be shown and not just the line)					
			indic	cation that more	than one "spot" either on diagram	or as comment	[1]			
			Allov two	w MAX [2] for ro or more rings	und filter paper with green spot at	centre				
		(ii)	run d	chromatogram o	f pure chlorophyll can be implied		[1]			
			sam NOT	e position of gre f just a green sp	en spot or same Rf ot		[1]			
	(b)	cata	alyst							
		pnc phc	tosyr toche	emical reaction of	piasts or needs light					
		car	bon d	lioxide + water fo	orm den NOT sugar					
		Any		REE correct poin	ts ignore incorrect answers		[3]			
							[Total: 8]			
2	mol	lten	potas	sium iodide	NOT aqueous		[1]			
	hyd	lroge	en				[1]			
	wat	oxygen water used up or solution becomes more concentrated or sodium chloride remains								
	NO If p	T no rodu	char cts ar	nge re given as hvdro	ogen. chlorine and sodium hvdrox	ide then 2/3	[1]			
		nor		0 ,			[4]			
	oxy	gen	(and	water)			['] [1]			
	sulf	furic	acid		accept hydrogen sulfate		[1]			
	aqu		s or c	lilute or concent	rated potassium bromide		[1]			
	act	ept	conc	ctionnulae						
							[lotal: 8]			
3	(a)	(i)	D				[1]			
		(ii)	Е				[1]			
		(iii)	B or	F			[1]			
		(iv)	в				[1]			
		(v)	А				[1]			

	Page 3		Mark Scheme: Teachers' version Syllabus		Paper	
			IGCSE – May/June 2009	0620	31	
((b) (i)	CF ₂ CON C ²⁺ a 7× a NOT Igno acce	or CaI ₂ ND next two marks conditional on correct formula and F ⁻ or Ca ²⁺ and I ⁻ and 1o round F/I FE covalent = 0 re electrons around Ca ept arrow notation arrow from electron on calcium a	tom to iodine	[1] [1] [1]	
	(ii)	high conc solu brittl corre	melting point or boiling point ducts when molten or in solution ble in water e ect chemical properties			
		hard Any NOT	TWO Crystalline solid NOT does not conduct as a solid		[2]	
					[Total: 10]	
4	(i)	Cu a	and Pd		[2]	
	(ii)	Ba a	and La		[2]	
	(iii)	+2 c	or 2+ or Ba^{2+}		[1]	
	(iv)	Ba c	or La		[1]	
	(v)	it is a	a transition metal or a d block element		[1]	
					[Total: 7]	
5 ((a) (i)	$Ca^{2+} + 2F^{-} \rightarrow CaF_2$ Not balanced ONLY [1] Both species must be correct for first mark. Second mark is for correct balancing.			[2] ancing.	
	(ii)	Mole Ansv acce acce NOT If flu	e ratio Ca^{2+} : F ⁻ is 1:2 wer must mention moles ept argument based on charges or <u>number</u> of ions ept 2 moles of NaF react with 1 mole of CaC l_2 just "2" in equation orine must specify atoms or ions		[1]	
	(iii)	to re impu or se To re	move traces of solutions or to remove soluble urities or to remove a named salt sodium chloride odium fluoride or calcium chloride emove impurities is not enough		[1]	
	(iv)	to dr NOT	ry (precipitate) or to remove water or to evaporate w T to evaporate some of water NOT to crystallise salt	vater	[1]	

	Page 4			Mark Scheme: Teachers' version	Syllabus	Paper				
				IGCSE – May/June 2009	0620	31				
	(b) T ₃ (PO ₄) ₂ allow correct example explain why 8 cm ³ react fully comment about mole ratio									
6	 (a) (i) air (liquid) petroleum or crude oil or alkanes or methane or water or steam or steam resultable aqueous solution e.g. brine or sea water 									
		<i></i>	NOI	E: cannot crack methane						
		(ii)	iron			[1]				
		(iii)	(as a	a) fertiliser or to make fertilisers or to make nitric ac	d	[1]				
	(b)	(i)	conc acce NOT	centrations/macroscopic properties do not change pt amounts stay the same no change		[1]				
		rate of forward and back reactions equal								
		(ii)	it <u>de</u> or it	<u>creases</u> with <u>increase</u> temperature <u>increases</u> with <u>decrease</u> temperature		[1]				
	(c)	(i)	shov (any	vs an increase either a line or curve decrease = 0)		[1]				
		(ii)	incre that igno	ease pressure favours the side with lower volume or is RHS or products side re any mention of rates	molecules or mole	s [1] [1]				
						[Total: 10]				
7	(a)	(tot (tot acc	al eno al exc cept c	dothermic change = 436 + 242 = +)678 kJ othermic change = 2 × 431 = –)862 kJ correct sign/supplied/absorbed for endo etc.		[1] [1]				
		acc cha	cept c ange f	orrect sign/evolved/produced for exo etc. or reaction = –184 kJ		[1]				
	not necessary to calculate –184, just show that exo change > than endo ecf allowed provided negative –184 kJ scores all 3 marks									
	(b)	(i)	beca acce prote	ause it accepts a proton epts hydrogen ion or H ⁺ ONLY [1] on and H ⁺ [2]		[2]				
		(ii)	hydr hydr weal	ogen chloride is a strong acid ogen fluoride is a weak acid ker or stronger correctly applied for [2]		[1] [1]				

	Page 5			Mark Scheme: Teachers' version	Syllabus	Paper			
				IGCSE – May/June 2009	0620	31			
	((iii) hydrogen chloride (aqueous) would have low<u>er</u> pH OR hydrogen fluoride (aqueous) would have high<u>er</u> pH If values suggested, not over 7 							
8	(a)	bioo mao	degra de fro	dable or breaks down naturally m a renewable source or does not use up petroleu	m				
		red any igno	uce v TWC pre m	isual pollution or reduces need for landfill sites or lo) ention of toxic gases	ess danger to wildlif	ē [2]			
	(b)	(i)	este acce	r e pt polyester or fat or lipid or vegetable oil or <u>carbo</u>	oxylic acid	[1]			
		(ii)	acid alco NOT	or carboxylic <u>acid</u> or alkanoic <u>acid</u> hol or hydroxyl or alkanol formulae NOT hydroxide		[1] [1]			
	((iii)	conc CON or m	lensation ID because water is formed in reaction nonomer does not have C=C bond		[1] [1]			
	(c)	(i)	laction	c acid \rightarrow acrylic acid + water		[1]			
		(ii)	add rema goes If ma Colc	bromine (water) or bromine in an organic solvent ains brown/orange/yellow s colourless NOT clear ark 1 near miss e.g. bromide allow marks 2 and 3 our of reagent must be shown somewhere for [3] oth	nerwise max [2]	[1] [1] [1]			
			OR a purp	acidified potassium manganate(VII) le/pink to colourless					
			OR a purp or p	alkaline potassium manganate(VII) le/pink to green urple/pink to brown precipitate					

	Page 6		;	Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – May/June 2009	0620	31
		(iii) reagent observable result				
		suitable named metal (NOT sodium, lead, any metal below magnesium etc.) if un-named metal [0] result can score [1] hydrogen evolved or bubbles/effervescence/fizzing				
		insoluble metal oxide colour change or dissolves				
	any carbonate or bicarbonate gas/carbon dioxide/bubbles/effervescence/fizzing					
			sodi temp unsp NOT	um hydroxide or alkali perature increase or accept indicator to show neutra pecified base scores [1] only alcohol	alisation	
						[Total: 13]
9	(a)	 72/24 = 3 and 28/14 = 2 Mg₃N₂ accept just formula for [2] even with incorrect or no working NOT ecf 		[1] [1]		
	(b)	Al₄(For	C₃ + 1 `Al₄C₃	2H ₂ O = 4AI(OH) ₃ + 3CH ₄ ₃ ONLY [1]		[2]
	(c)	(i)	silico 0.07 beca If 80 argu	on is limiting reagent moles of Si and 25/160 = 0.156 moles of Br_2 ause 0.14 (2 × 0.07) < 0.156 used to find moles of Br_2 the mark 1 and 3 still avai ments based on masses can be used	lable	[1] [1] [1]
		(ii)	0.07 NOT	ecf		[1]
						[Total: 8]

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version Syllabus		Paper		
	IGCSE – May/June 2009 0620							
1	(a) (i) basic set up – container and chromatography paper							
	sample clearly above level of solvent (original mark must be shown and not just the line)							
			indic	cation that more than one "spot" either on diagram c	or as comment	[1]		
			Allov two	w MAX [2] for round filter paper with green spot at c or more rings	entre			
		(ii)	run o sam NOT	chromatogram of pure chlorophyll can be implied le position of green spot or same Rf f just a green spot		[1] [1]		
	(b)	cata pho pho carl gluo Any	alyst tosyr toche con d cose	nthesis or chloroplasts emical reaction or needs light lioxide + water form or starch or oxygen NOT sugar REE correct points ignore incorrect answers		[3]		
						[Total: 8]		
2	mol	lten l	ithiun	n chloride NOT aqueous		[1]		
	hyd	lroge	n			[1]		
	wat	er us	sed u	p or solution becomes more concentrated or sodiu	m chloride remains	[']		
	lf pi	rodu	cnar cts ar	nge re given as hydrogen, chlorine and sodium hydroxid	e then 2/3	[1]		
	copper oxygen (and water) sulfuric acid accept hydrogen sulfate							
	aqu acc	ieou: :ept	s or c corre	dilute or concentrated potassium bromide		[1]		
						[Total: 8]		
3	(a)	(i)	D			[1]		
		(ii)	Е			[1]		
		(iii)	B or	F		[1]		
		(iv)	В			[1]		
		(v)	A			[1]		

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper
	-		IGCSE – May/June 2009	0620	32
	(b) (i)	CA o CON 6× a NOT Igno acce	or CaO ND C ²⁺ and A ²⁻ or Ca ²⁺ and O ²⁻ and 2o round anion FE covalent = 0 are electrons around Ca ept arrow notation arrow from electron on calcium a	tom to oxygen	[1] [1] [1]
	(ii)	high conc solu brittl basi hard Any NOT	melting point or boiling point ducts when molten or in solution ble in water e c(oxide) or basic property I TWO T crystalline solid NOT does not conduct as a solid		[2]
					Tatal: 401
					[lotal: 10]
4	(i)	Cu a	and Pd		[2]
	(ii)	Ba a	and La		[2]
	(iii)	+2 c	or 2+ or Ba ²⁺		[1]
	(iv)	Ba c	or La		[1]
	(v)	it is a	a transition metal or a d block element		[1]
					[Total: 7]
5	(a) (i)	Fe ³⁺ Not Both	$f + 3F^{-} \rightarrow FeF_{3}$ balanced ONLY [1] a species must be correct for first mark. Second mar	k is for correct bala	[2] ancing.
	(ii)	Mole Ansv acce acce NOT If flu	e ratio Fe^{3+} : F^- is 1:3 wer must mention moles ept argument based on charges or <u>number</u> of ions ept 1mole of FeF_3 reacts with 3 moles of NaF f just "3" in equation orine must specify atoms or ions		[1]
	(iii)	to re impu or se To re	emove traces of solutions or to remove soluble urities or to remove a named salt sodium chloride odium fluoride or iron(III) chloride emove impurities is not enough		[1]
	(iv)	to dr NOT	ry (precipitate) or to remove water or to evaporate v I to evaporate some of water	vater	[1]

	Page 4			Mark Scheme: Teachers' version	Syllabus	Paper
		•		IGCSE – May/June 2009	0620	32
	(b)		[1] [1] [1]			
						[Total: 8]
6	(a)	(i)	air (l petro suita NOT	liquid) oleum or crude oil or alkanes or methane or water able aqueous solution e.g. brine or sea water FE: cannot crack methane	[.] or steam or stear	[1] n reforming or [1]
		(ii)	iron			[1]
		(iii)	(as a	a) fertiliser or to make fertilisers or to make nitric ac	id	[1]
	(b)	(i)	conc acce NOT	centrations/macroscopic properties do not change ept amounts stay the same I no change		[1]
			<u>rate</u>	of forward and back reactions equal		[1]
		(ii)	it <u>inc</u> or it	<u>creases</u> with <u>increase</u> pressure <u>decreases</u> with <u>decrease</u> pressure		[1]
	(c)	(i)	shov (any	ws a decrease either a line or curve r increase = 0)		[1]
		(ii)	incre that acce	ease temperature favours the endothermic change is LHS or reactants side or so less ammonia at equ e pt corresponding exothermic argument	illibrium	[1] [1]
						[Total: 10]
7	(a)	(tot (tot acc	al eno al exo cept o	dothermic change = 436 + 158 = +)594 kJ othermic change = 2 × 562 = –)1124 kJ correct sign/supplied/absorbed for endo etc.		[1] [1]
		acc cha	cept c ange f	correct sign/evolved/produced for exo etc. for reaction = –530 kJ		[1]
		not ecf –53	> than endo			
	(b)	(i)	beca acce prote	ause it accepts a proton epts hydrogen ion or H ⁺ ONLY [1] on and H ⁺ [2]		[2]
		(ii)	hydr hydr wea	rogen chloride is a strong acid rogen fluoride is a weak acid ker or stronger correctly applied for [2]		[1] [1]

	Page 5			Mark Scheme: Teachers' version	Syllabus	Paper			
				IGCSE – May/June 2009	0620	32			
	 (iii) hydrogen chloride (aqueous) would have low<u>er</u> pH OR hydrogen fluoride (aqueous) would have high<u>er</u> pH If values suggested, not over 7 								
						[Total: 8]			
8	(a)	bio ma	degra de frc	dable or breaks down naturally om a renewable source or does not use up petroleu	m				
		reduce visual pollution or reduces need for landfill sites or less danger to wildlife any TWO ignore mention of toxic gases							
	(b)	(i)	este acce	r ept polyester or fat or lipid or vegetable oil or <u>carbo</u>	oxylic acid	[1]			
		(ii)	acid alco NO1	or carboxylic <u>acid_</u> or alkanoic <u>acid</u> hol or hydroxyl or alkanol ſ formulae NOT hydroxide		[1] [1]			
		(iii)	cond CON or m	densation ND because water is formed in reaction nonomer does not have C=C bond		[1] [1]			
	(c)	(i)	lacti	c acid \rightarrow acrylic acid + water		[1]			
		(ii)	add rema goes If ma Colo	bromine (water) or bromine in an organic solvent ains brown/orange/yellow s colourless NOT clear ark 1 near miss e.g. bromide allow marks 2 and 3 our of reagent must be shown somewhere for [3] oth	erwise max [2]	[1] [1] [1]			
			OR a	acidified potassium manganate(VII) le/pink to colourless					
			OR a purp or p	alkaline potassium manganate(VII) le/pink to green urple/pink to brown precipitate					

	Ра	ge 6	i	Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – May/June 2009	0620	32
		(iii)	reag obse	ent ervable result		[1] [1]
			suita gas/ if un·	ble named metal (NOT sodium, lead etc.) hydrogen/bubbles/effervescence/fizzing -named metal [0] result can score [1]		
			insol colo	uble metal oxide ur change or dissolves		
			any gas/ acce			
			sodiu (tem unsp NOT	um hydroxide or alkali perature increase or accept indicator to show neutr pecified base scores [1] only alcohol	alisation)	
						[Total: 13]
9	(a)	72/24 = 3 and $28/14 = 2Mg3N2accept just formula for [2] even with incorrect or no workingNOT ecf$			[1] [1]	
	(b)	Al₄0 For	C₃ + 1 Al₄C₃	2H ₂ O = 4AI(OH) ₃ + 3CH ₄ ₃ ONLY [1]		[2]
	(c)	(i)	silico 0.08 beca If 19 argu	on is limiting reagent moles of Si and 7.2/38 = 0.189 moles of F_2 ause 0.16 (2 × 0.08) < 0.189 used to find moles of F_2 marks 1 and 3 still availab ments based on masses can be used	le	[1] [1] [1]
		(ii)	0.08 NOT	ecf		[1]
						[Total: 8]