UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/03

Paper 3

May/June 2006

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
Total		

This document consists of 16 printed pages.

Iron i	is a	transition element.	
(a) \	Whi	ich of the following statements about transition elements are correct?	
-	Tick	k three boxes.	
-	The	e metals are highly coloured e.g. yellow, green, blue.	
-	The	e metals have low melting points.	
-	The	eir compounds are highly coloured.	
-	The	eir compounds are colourless.	
-	The	e elements and their compounds are often used as catalysts.	
-	The	ey have more than one oxidation state.	
			[3]
(b) ((i)	In which Period in the Periodic Table is iron to be found?	
			[1]
((ii)	Use the Periodic Table to work out the number of protons and the num neutrons in one atom of iron.	ber of
		number of protons = number of neutrons =	[1]
		is extracted in a blast furnace. The list below gives some of the substances ormed in the extraction.	sused
	са	rbon monoxide coke iron ore limestone sla	g
	(i)	Which substance is a mineral containing largely calcium carbonate?	
			[1]
((ii)	Which substance is formed when impurities in the ore react with calcium oxid	
			[1]
(i	ii)	Which substance is also called hematite?	
			[1]

1

(d)	State two functions of the coke used in the blast furnace.	
		 [2]
(e)	Most of the iron is converted into mild steel or stainless steel. Give one use for each.	
	mild steel	
	stainless steel	[2]

2 Some reactions of metals W, X, Y and Z are given below.

metal	reaction with water	reaction with dilute hydrochloric acid
w	A few bubbles form slowly in cold water.	Vigorous reaction. Gas given off.
Х	Vigorous reaction. Metal melts. Gas given off.	Explosive reaction. Should not be attempted.
Y	No reaction.	No reaction.
Z	Does not react with cold water. Hot metal reacts with steam.	Steady fizzing.

(a)	Arrange these metals in order of reactivity.		
	most reactive		
	least reactive		[2]
(b)	Which of these	metals could be	
	(i) magnesiur	m,	
			[1]
	(ii) copper?		
			[1]

[2]

(c) The equation for the reaction of **X** with cold water is given below.

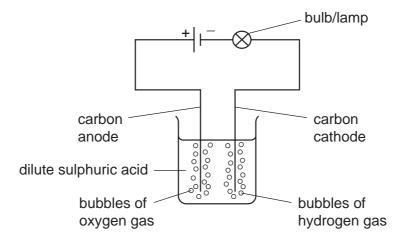
$$2X(s) + 2H_2O(l) \longrightarrow 2XOH(aq) + H_2(g)$$

(i)	Describe the test you would use to show that the gas evolved is hydrogen.

		[1]
ii)	How could you show that the water contained a compound of the type X OH?	

(iii)	In which group of the Periodic Table does metal X belong?	
		[1]

(iv)	The ore of X is its chloride.	Suggest how metal X could be extracted from i	its
	chloride.		


3 (a) Four bottles were known to contain aqueous ammonia, dilute hydrochloric acid, sodium hydroxide solution and vinegar, which is dilute ethanoic acid. The bottles had lost their labels. The pH values of the four solutions were 1, 4, 10 and 13.

Complete the table.

solution	рН
aqueous ammonia	
dilute hydrochloric acid	
sodium hydroxide solution	
vinegar	

[2]

(b) The following apparatus was set up to investigate the electrical conductivity of dilute acids.

Dilute sulphuric acid is a strong acid. If it was replaced by a weak acid, what **two** differences in the observations would you expect to make?

(c) When nitric acid is added to water the following reaction occurs.

$$HNO_3 + H_2O \longrightarrow NO_3^- + H_3O^+$$

Give the name and the formula of the particle which is transferred from nitric acid to water.

name _____

formula [2]

			7
(d)	Thi	s question is concerned with	the following oxides.
		aluminium oxide	Al_2O_3
		calcium oxide	CaO
		carbon dioxide	CO ₂
		carbon monoxide	CO
		magnesium oxide	MgO
		sulphur dioxide	SO ₂
	(i)	Which of the above oxides sodium hydroxide?	will react with hydrochloric acid but not with aqueous
			[1]
	(ii)	Which of the above oxides hydrochloric acid?	will react with aqueous sodium hydroxide but not with
			[1]
((iii)	Which of the above oxides sodium hydroxide?	will react both with hydrochloric acid and with aqueous
			[1]

(iv) Which of the above oxides will react neither with hydrochloric acid nor with

aqueous sodium hydroxide?

[1]

4	The	first three elements in Group IV are carbon, silicon, germanium.		
	(a)	The element germanium has a diamond-type structure. germanium. A diagram is acceptable.	Describe the	structure of

			[2]
(b)	Unl	ike diamond, graphite is soft and is a good conductor of electricity.	
	(i)	Explain why graphite has these properties.	
			[3]
	(ii)	Give a use of graphite that depends on one of these properties.	
		property	
		use	[1]
(c)		bon dioxide and silicon(${ m IV}$) oxide have similar formulae but different types icture.	of
	(i)	Give the formulae of these oxides.	
			[1]
	(ii)	How are their structures different?	
			[2]
(d)	hyd	these elements form compounds with hydrogen called hydrides. The saturativides of carbon are the alkanes. Predict the formula of the hydride of germanic ch contains two germanium atoms.	

[1]

5 Sulphuric acid is made by the Contact process in the following sequence of reactions.

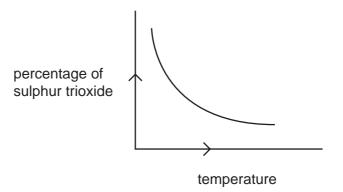
$\textbf{sulphur} \rightarrow \textbf{sulphur dioxide} \rightarrow \textbf{sulphur trioxide} \rightarrow \textbf{sulphuric acid}$

(a) (i) How is sulphur dioxide made from sulphur?

______[1

(ii) Sulphur dioxide has other uses. Why is it used in the manufacture of paper?

[1]


(iii) How does it preserve food?

[1]

(b) The equation for a stage of the Contact process is

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$

The percentage of sulphur trioxide in the equilibrium mixture varies with temperature.

(i) How does the percentage of sulphur trioxide in the equilibrium mixture vary as the temperature increases? Circle the correct answer.

increases stays the same decreases [1]

(ii) Is the forward reaction in the equilibrium $2SO_2 + O_2 \rightleftharpoons 2SO_3$ exothermic or endothermic? Give a reason for your choice.

[2]

[Turn over

(iii)	Explain, mentioning both rate and percentage yield, why the temperature used the Contact process is 450°C.	d in
		[2]
(iv)	Describe how the sulphur trioxide is changed into concentrated sulphuric acid.	
		[2]

6 (a) Exothermic reactions produce heat energy.

An important fuel is methane, natural gas. The equation for its combustion is as follows.

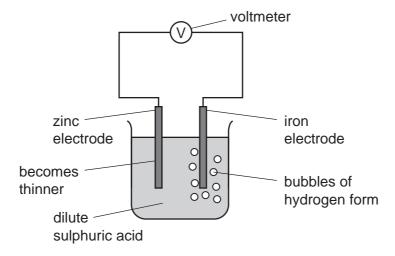
(i) In chemical reactions bonds are broken and new bonds are formed. Using this reaction give an example of

•

a bond that is formed. [2]

(ii) Explain, using the idea of bonds forming and breaking, why this reaction is exothermic, that is it produces heat energy.

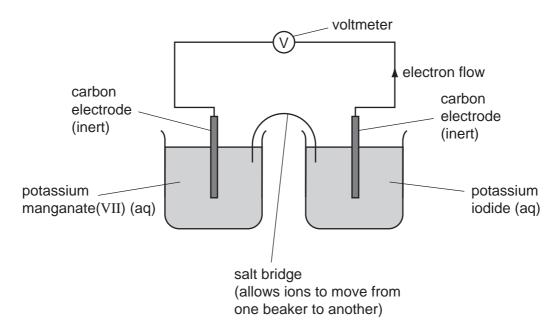
(b) Some radioactive isotopes are used as nuclear fuels.


(i) Give the symbol and the nucleon number of an isotope that is used as a nuclear fuel.

[2]

(ii) Give another use of radioactive isotopes.

______[1]


- (c) Cell reactions are both exothermic and redox. They produce electrical energy as well as heat energy.
 - (i) The diagram shows a simple cell.

Which substance in this cell is the reductant and which ion is the oxidant?

	reductant	
	oxidant	[2]
(ii)	How could the voltage of this cell be increased?	
		[1]
iii)	What is the important large scale use, relating to iron and steel, of this type of reaction?	cell
		[1]

(d) Cells can be set up with inert electrodes and the electrolytes as oxidant and reductant.

The potassium manganate(VII) is the oxidant and the potassium iodide is the reductant.

(i)	Describe the colour change that would be observed in the left hand beaker.	
		[2
(ii)	Write an ionic equation for the reaction in the right hand beaker.	
		[2

[2]

7 The fractional distillation of crude oil usually produces large quantities of the heavier fractions. The market demand is for the lighter fractions and for the more reactive alkenes. The heavier fractions are cracked to form smaller alkanes and alkenes as in the following example.

$$C_8H_{18}$$
 \longrightarrow C_4H_{10} + C_4H_8 octane butenes

(a) (i) Write a different equation for the cracking of octane.

$$C_8H_{18} \longrightarrow \qquad + \qquad \qquad [1]$$

(ii) The cracking of octane can produce isomers with the molecular formula C_4H_8 . Draw the structural formulae of two of these isomers.

(b) (i) Give the essential condition for the reaction between chlorine and butane.

[1]

(ii) What type of reaction is this?

[1]

(iii) This reaction produces a mixture of products. Give the names of **two** products that contain four carbon atoms per molecule.

and _____

(c)	Alkenes are more reactive than alkanes and are used to make a range of organic chemicals. Propene, CH ₃ –CH=CH ₂ , is made by cracking. Give the structural formula of the addition product when propene reacts with the following.
	(i) water
	(ii) bromine
(d)	[1] Propene reacts with hydrogen iodide to form 2-iodopropane.
. ,	$CH_3-CH=CH_2$ + HI \longrightarrow $CH_3-CHI-CH_3$
	1.4 g of propene produced 4.0 g of 2-iodopropane.
	Calculate the percentage yield.
	moles of CH ₃ –CH=CH ₂ reacted =
	maximum moles of CH ₃ -CHI-CH ₃ that could be formed =
	mass of one mole of CH_3 – CHI – CH_3 = 170 g
	maximum mass of 2- iodopropane that could be formed =
	percentage yield% [4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements DATA SHEET

								Ğ	Group								
_	=											=	2	>	N	II/	0
							1 Hydrogen										4 He ium 2
7 Li Lithium	9 Berylium 4					-		-				2 Boron 5	12 Carbon 6	14 N Nitrogen 7	16 Oxygen	19 T Fluorine	20 Neon 10
23 Na Sodium	Mg Magnesium											27 A1 Aluminium 13	28 Si Silicon	31 P Phosphorus 15	32 S Sulphur 16	35.5 C1 Chlorine	40 Ar Argon
39 K	Ca Calcium 20	Scandium	48 二 Trtanium	51 V Vanadium 23	52 Cr Chromium 24	55 Wn Manganese 25	56 Fe Iron	59 Co Cobalt	59 Nickel	64 Copper 29	65 Zn Zinc 30		73 Ge Germanium 32	75 AS Arsenic	79 Selenium 34	80 Br Bromine 35	84 Kry Krypton 36
Rubidium 37	Strontium	89 × Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium	96 Mo Molybdenum 42	Tc Technetium 43	Ruthenium	Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd cadmium 48	115 In Indium	Sn Tin 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine	Xe Xenon
Caesium 55	137 Ba Barium 56	139 La Lanthanum *	178 Hf Hafnium 72	181 Ta Tantalum	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T t Thallium	207 Pb Lead	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Ra Radium 88	227 Ac Actinium 89															
*58-71 L	*58-71 Lanthanoid series	1 series eries		140 Q	141 प	44 D	Pm	150 Sm	152 Eu	157 Gd	159 T	162 D	165 H	167 Er	169 Tm	173 Yb	175 Lu

Europium Am Samarium 62 Plutonium Pu 용 Praseodymium Neodymium 59 60 Ра Cerium 232 **Th** 90 28 b = proton (atomic) number a = relative atomic mass X = atomic symbol 190-103 Actinoid series a 🗙

Lutetium

Ytterbium

Thulium

Erbium

Holmium

89

29

Dysprosium 66

Terbium

92

Gadolinium 64

71

2

Ľ

Nobelium

Fm

Es

Californium 98 ರ

BerKelium

Curium Curium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Key