UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2006 question paper

0620 CHEMISTRY

0620/03 Paper 3, maximum raw mark 80

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 1		Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2006	0620	03
	used a more Four b	ooxes ticked t	•		
	Five b	oxes ticked [0]		
b)	(i) p	eriod 4			
	(ii) 2	6 <i>p</i> and 30 <i>n</i>			
c)	(i) lii	mestone			
	(ii) s	lag			
	(iii) ir	on ore			
		n or provide l ke carbon mo			
e)	mild s stainle	iteel ess steel	cars or machinery or fridges etc. cutlery or chemical plants etc.		
					[ТОТ]
a)	W Z Y For m	ost reactive X	(and least Y [1] ONLY s [0]		
b)	magn coppe	esium er	W Y		
c)	0		h burning splint air and ignited goes pop plint		
	u • •	r pH paper go r high pH, acc	ator goes blue bes blue cept 13, 14		
	o N O	r with metallio I OT litmus	ion gives off ammonia c cations forms a precipitate - neutralises acids with an observable warm.	result,	
	(iii) G	Group 1			
		lectrolysis			
	U	OND molten			

	Page	2 2		Mark Scheme	Syllabus	Paper	
			IG	CSE – May/June 2006	0620	03	
(a)	hyd sod		ric acid 1 droxide 13				
		correct corre					
(b)	fast	er rate	g acid bulb brighte of bubbles ponding comment				
(c)	H⁺ r	not con	T hydrogen ion aditional on proton for [2] is proton an	d H ⁺			
(d)	(i)	CaO a	and MgO				
	(ii)	CO ₂ a	and SO ₂				
	(iii)	A <i>l</i> ₂ O ₃					
	(iv)	СО					
						[TOTA	L = '
(a)			ns around 1 Ge ahedral or stated t	to be			
(b)	(i)		nite has layers) that can move/sl	ip			
			ak bonds betweer	•			
		Graph	nite has delocalise	d/free/mobile electrons			
	(ii)	soft	rty <u>and</u> use ood conductor	lubricant or pencils electrodes or in electric motors			
(c)	(i)	CO ₂ a	and SiO ₂ or XO ₂				
	(ii)		nolecular or simplo macromolecular o i	e molecules or simple covalent giant covalent			
(d)	Ge ₂	H ₆					
						[TOTA	L = '

Mark Scheme

Syllabus

Paper

Page 2

a bleach bacteria/micro-organisms T prevents food going bad or rotten or decaying crease othermic DND increase temperature favours back reaction so it is dothermic, so forward reaction must be exothermic R any similar explanation will be awarded the mark, for example e forward reaction is not favoured by an increase in temperature it is exothermic (rather than endothermic) w enough for good yield gh enough for (economic) rate by similar explanation will be awarded the mark DT just that it is the optimum temperature bble into (conc) sulphuric acid	Burn sulphur in air (or oxygen) as a bleach kill bacteria/micro-organisms NOT prevents food going bad or rotten or decaying decrease exothermic COND increase temperature favours back reaction so it is endothermic, so forward reaction must be exothermic OR any similar explanation will be awarded the mark, for example The forward reaction is not favoured by an increase in temperature so it is exothermic (rather than endothermic)	03
a bleach bacteria/micro-organisms T prevents food going bad or rotten or decaying crease othermic DND increase temperature favours back reaction so it is dothermic, so forward reaction must be exothermic R any similar explanation will be awarded the mark, for example e forward reaction is not favoured by an increase in temperature it is exothermic (rather than endothermic) w enough for good yield gh enough for (economic) rate by similar explanation will be awarded the mark DT just that it is the optimum temperature bble into (conc) sulphuric acid	as a bleach cill bacteria/micro-organisms NOT prevents food going bad or rotten or decaying decrease exothermic COND increase temperature favours back reaction so it is endothermic, so forward reaction must be exothermic OR any similar explanation will be awarded the mark, for example The forward reaction is not favoured by an increase in temperature	
bacteria/micro-organisms T prevents food going bad or rotten or decaying crease othermic DND increase temperature favours back reaction so it is dothermic, so forward reaction must be exothermic R any similar explanation will be awarded the mark, for example e forward reaction is not favoured by an increase in temperature it is exothermic (rather than endothermic) w enough for good yield gh enough for (economic) rate by similar explanation will be awarded the mark T just that it is the optimum temperature bble into (conc) sulphuric acid	kill bacteria/micro-organisms NOT prevents food going bad or rotten or decaying decrease exothermic COND increase temperature favours back reaction so it is endothermic, so forward reaction must be exothermic OR any similar explanation will be awarded the mark, for example The forward reaction is not favoured by an increase in temperature	
othermic OND increase temperature favours back reaction so it is dothermic, so forward reaction must be exothermic R any similar explanation will be awarded the mark, for example to forward reaction is not favoured by an increase in temperature it is exothermic (rather than endothermic) w enough for good yield gh enough for (economic) rate by similar explanation will be awarded the mark OT just that it is the optimum temperature bble into (conc) sulphuric acid	NOT prevents food going bad or rotten or decaying decrease exothermic COND increase temperature favours back reaction so it is endothermic, so forward reaction must be exothermic DR any similar explanation will be awarded the mark, for example The forward reaction is not favoured by an increase in temperature	
othermic OND increase temperature favours back reaction so it is dothermic, so forward reaction must be exothermic R any similar explanation will be awarded the mark, for example e forward reaction is not favoured by an increase in temperature it is exothermic (rather than endothermic) w enough for good yield gh enough for (economic) rate by similar explanation will be awarded the mark OT just that it is the optimum temperature bble into (conc) sulphuric acid	exothermic COND increase temperature favours back reaction so it is endothermic, so forward reaction must be exothermic OR any similar explanation will be awarded the mark, for example The forward reaction is not favoured by an increase in temperature	
OND increase temperature favours back reaction so it is dothermic, so forward reaction must be exothermic any similar explanation will be awarded the mark, for example the forward reaction is not favoured by an increase in temperature it is exothermic (rather than endothermic) w enough for good yield gh enough for (economic) rate by similar explanation will be awarded the mark or just that it is the optimum temperature bble into (conc) sulphuric acid	COND increase temperature favours back reaction so it is endothermic, so forward reaction must be exothermic OR any similar explanation will be awarded the mark, for example The forward reaction is not favoured by an increase in temperature	
gh enough for (economic) rate by similar explanation will be awarded the mark of just that it is the optimum temperature bble into (conc) sulphuric acid		
	Low enough for good yield High enough for (economic) rate Any similar explanation will be awarded the mark NOT just that it is the optimum temperature	
	oubble into (conc) sulphuric acid add water NOT consequential	
		[ТОТ]
y bond that is broken C-H or O=O	Any bond that is broken C-H or O=O	
	Bond that is formed C=O or O-H Do not insist on double bonds	
an is used breaking bonds r just - more energy released than used [1] r - energy is released forming bonds and it is used	More energy is released forming bonds han is used breaking bonds For just - more energy released than used [1] For - energy is released forming bonds and it is used breaking bonds [1]	
5	J 235	
atment of cancer, autoradiographs, tracer, sterilising food		
	reatment of cancer, autoradiographs, tracer, sterilising food, surgical equipment, measuring thickness, checking welds	
rgical equipment, measuring thickness, checking welds		

			IGCSE – May/June 2006	0620	03	
	(iii)		icial protection or stop iron/steel rusting Ivanising			
(d)	(i)	to col	or purple ourless or decolourised red NOT clear			
	(ii)		2e = I ₂ anced ONLY [1]			
					[TOTAL	=
(a)	(i)	any c	orrect equation			
	(ii)		cural formulae from but-1-ene, but-2-ene, methylpropene clobutane Any TWO			
(b)	(i)	light c	or 200°C or lead tetraethyl			
	(ii)		itution or photochemical or chlorination or free radical logenation			
	(iii)	1-chlo Any T	orobutane, 2-chlorobutane, dichlorobutane etc. T WO			
(c)	(i)	CH ₃ C	CH ₂ CH ₂ OH or CH ₃ CH(OH)CH ₃			
	(ii)		:H(Br)CH₂Br 1,3-dibromopropane			
(d)			CH ₃ -CH = CH ₂ reacted = 1.4/42 = 0.033			
	conseq maximum moles of CH ₃ -CH(I)-CH ₃ that could be formed = 0.033					
	max acc	ept 17	mass of 2-iodopropane that could be formed = 5.61 g 0 x 0.033 = 5.61 and 170 x 0.033333 = 5.67			
	pero Do a se	centag not m a	nless greater than 100% le yield 4.0/5.67 x 100 = 70.5% ark consequently to a series of small integers. There he attempt to answer the question, then consequential mate.			
					[TOTAL	=

Mark Scheme

Syllabus

Paper

Page 4

[For paper 12+10+10+10+10+15+13 = 80]