International General Certificate of Secondary Education

MARK SCHEME for the June 2005 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 0620 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:				
	mark available	А	С	Е	F	
Component 3	80	58	30	16	11	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

June 2005

IGCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY Extended Theory

	Page 1						Syllabus	Pape	er		
					IGCS	E – JUNE	2005		0620	3	
1	(a)	(i)	darker or chlorine bromine iodine	yello oran	w, yellow	//green n, browni	sh red				[1]
		(ii)	<u>gas, liqui</u> all three r								[1]
		(iii)	colourles gas	ss or (pale) yell	ow					[1] [1]
	(b)	Mus	st have a c	correc	t reagent	otherwis	se wc = 0				
		yell	chlorine v ow or orar	nge o	r brown	e in chlori	ine gas				[1] [1]
			k brown o i cept coloi			r than for	· bromide)				[1]
		off v yelle	ow <u>precipi</u>	ale yé <u>itate</u> ir	ellow or ci nsoluble i	ream <u>pree</u> n aqueou	us ammonia		queous ammo us ammonia	onia	[1] [1] [1]
		pale	add lead e yellow o l ow <u>precipi</u>	r off w	vhite or ci		<u>cipitate</u> ıs ammonia				[1] [1] [1]
							ectrolysis, iro issium mang		etc.		
	(c)		- 3C <i>l</i> ₂ = having eit			or produc	cts correct C	NLY [1]			[2]
	(d)	chlo CO		M _r or	lower der	nsity or lig	ghter molec	ules or mol	lecules move	faster	[1] [2]
		OR	smalle	er with	ased on A no additi of [3] not	ional com	1] nment or sie	eve idea [0]			
										ΤΟΤΑΙ	_ = 12
2	(a)		+ $I_2 = Z$ having eit			or produc	cts correct C	NLY [1]			[2]
	(b)		zinc and s solves in e		•		hite precipita e mentioned				[1] [1]
		Mar		irst (s	odium hy	droxide d	•	,	if completely		[1] hen an

Page 2		Mark Scheme	Paper	
		IGCSE – JUNE 2005	0620	3
(c)	(i)	zinc <u>and</u> a reason Do not mark conseq to iodine in excess		[1
	(ii)	final mass of zinc bigger or the level section higher or les gradient less steep or longer time or falls more slowly	ss zinc used	up [1 [1
	(iii)	steeper gradient same loss of mass of zinc		[1 [1
				TOTAL = 1
(a)	(i)	CH_3 - CH == CH_2		[1
	(ii)	conseq to (i) correct repeat unit COND evidence of continuation		[1 [1
	(iii)	monomer COND because it has a double bond or unsaturated or a NOT addition	alkene	[1 [1
(b)	(i)	to remove fibres or remove solid NOT precipitate, NOT impurities, NOT to obtain a filtrate		[′
	(ii)	because silver atoms have <u>lost electrons</u> OR oxidation number increased		[1
	(iii)	silver chloride		[′
(c)	(i)	name of an ester formula of an ester if they do not correspond MAX [1] Accept name - terylene for formula ester linkage and continuation If a 'fat' complete structure must be correct e.g. C ₁₇ H ₃₅ eff	tc.	[1 [1
	(ii)	Mark for formula only - [1] alcohol or alkanol NOT a named alcohol		[
(d)	(i)	acid loses a proton base accepts a proton		[; [
		OR same explanation but acid loses a hydrogen <u>ion</u> (1 and base gains hydrogen <u>ion</u> (1))	
	(ii)	only partially ionised or poor hydrogen ion donor or poo NOT does not form many hydrogen ions in water or low ions NOT pH		

TOTAL = 15

	Page 3		Mark Scheme	Syllabus	Paper
			IGCSE – JUNE 2005	0620	3
4	(a)	 (a) (i) correct word equation (carbon dioxide and water) Accept correct symbol equation 			
		(ii)	Must have a correct reagent otherwise wc = 0 add (acidified) barium chloride(aq) or nitrate or add bari COND white precipitate NOT lead(II) compounds	um ions	[1] [1]
		(iii)	low pH or universal indicator turns red(aq) pH 3 or less		[1]
	(b)	(i)	$H_2S + 2O_2 = H_2SO_4$ unbalanced [1]	[2]	
		(ii)	unpleasant smell or it is poisonous or when burnt for dioxide or forms sulphuric acid NOT it is a pollutant	ms acid rain	or forms sulphur [1]
		(iii)	2H to 1S COND 8e around sulphur atom 2e per hydrogen atom THREE correct TWO from above [1] Ionic structure = [0]		[2]
	(c)	(i)	vanadium oxide or vanadium(V) oxide or vanadium per Must be correct oxidation state if one given	toxide or V ₂ C	D ₅ [1]
		(ii)	400 to 500° C		[1]
		(iii)	add to (concentrated) sulphuric acid NOT dilute COND (upon sulphuric acid) above then add water		[1] [1]
	(d)	mas mol mol con	[1] [1] [1]		
					TOTAL = 16
5	(a)	(i)	A is glutamic acid B is alanine Accept names only, NOT R _f values		[1] [1]
		(ii)	because acids are colourless or to make them visible or to show positions of the samples or distance travelle	d	[1]
		(iii)	compare with known acids or reference samples or star Accept from colours of samples	ndards	[1]
		(iv)	amide linkage COND different monomers continuation Accept hydrocarbon part of chain as boxes If nylon 6 then only one monomer [1] NOT different mon	omers	[1] [1] [1]

Page 4		e 4	Mark Scheme	Syllabus	Paper	
			IGCSE – JUNE 2005	5	0620	3
	(b)	corr	ect structure as syllabus (box represer ect linkageO tinuation	[1] [1]		
	(c)	(i)	$C_6H_{12}O_6 = 2C_2H_5OH + 2CO_2$ not balanced [1] Accept C_2H_6O			[2]
		(ii)	gives out <u>energy</u> or equivalent NOT heat N.B. a total of [1] not [2]			[1]
		(iii)	glucose used up or yeast 'killed' by et NOT yeast used up	hanol NOT reactant use	d up	[1]
		(iv)	oxidise alcohol to acid or to ethanoic a or to carbon dioxide and water or if oxygen present aerobic respiration or cannot have anaerobic respiration NOT it is anaerobic respiration, must b	on in presence of oxy	•	[1]
		(v)	fractional distillation			[1]
						TOTAL = 15
6	(a)	(i)	bauxite			[1]
		(ii)	to reduce melting point or improve con or as a solvent or reduce the working	-		[1]
		(iii)	carbon dioxide or monoxide or fluorin	е		[1]
	(b)	(i)	aluminium			[1]
		(ii)	solution goes colourless or copper for or a <u>brown solid</u> forms or blue colour or bubbles NOT goes clear or copper formed			[1]
		(iii)	covered with an <u>oxide layer</u>			[1]
	(c)	read read	ction no reac	eaction tion		[1] [1]
	(d)	(i)	$2Al(OH)_3 = Al_2O_3 + 3H_2O$ Not balanced [1]			[2]
		(ii)	Aluminium nitrate = aluminium oxide only TWO correct products [1]	e + nitrogen dioxid	e + oxygen	[2]
						TOTAL = 12