Centre Number Candidate Number	Name
--------------------------------	------

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

0620/02

Paper 2

May/June 2004

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

	For Examiner's Use
	1
	2
ok at the	3
ncorrect or ect details in	4
ge.	5
	6
	Total

This document consists of 16 printed pages.

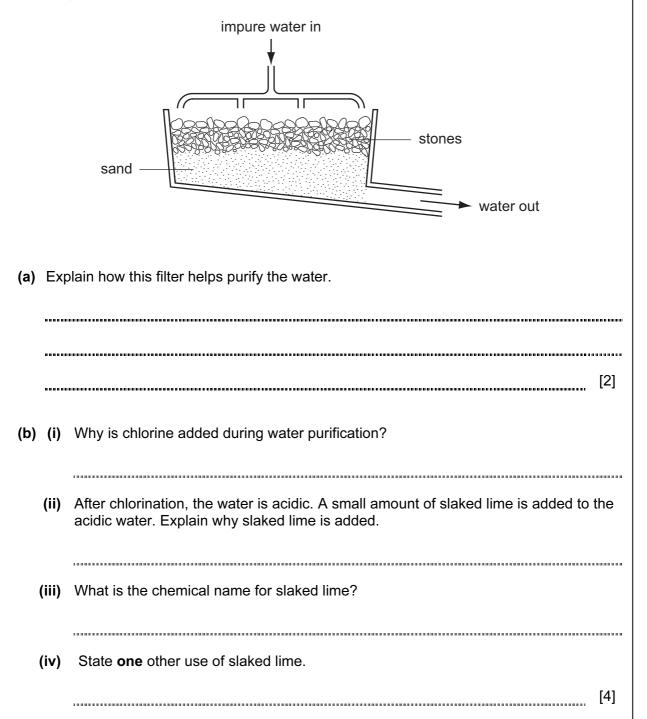
UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

Ο \bigcirc 00 В С D Ε F (a) Which three of the structures A to F represent elements? Give a reason for your answer. structures ____ reason [2] (b) Which one of the structures A to F represents a gas containing single atoms? [1] (c) (i) Which one of the structures A to F represents a gas containing diatomic molecules? (ii) State the name of a gas which has diatomic molecules. [2] (d) (i) Which one of the structures A to F represents graphite? (ii) State one use of graphite. [2]

2

1 The diagram shows models of various structures,


(e)	Stru	ucture D represe	ents a compound.					
	(i)	State what is m	neant by the term com	pound.				
								••
								•••
	(ii)	Which one of the	ne following substance	es is structure	E most likel	y to represen	t?	
		Put a ring arou	nd the correct answer					
		ammonia	hydrogen chloric	le me	ethane	water	[2]	
(f)	Hyc	drogen chloride i	is a compound.					
	(i)	Draw a diagran chloride.	n to show how the ele	ctrons are arra	anged in a r	nolecule of hy	/drogen	
		Show only the	outer electrons.					
						ogen electror orine electron		
							[2]	
	(ii)		of the type of bondin					
							[1]	
	(iii)	Hvdroaen chloi	ride dissolves in wate					-
	()		ou would use litmus p					
							[2]	
	(iv)	Which one of solution of hydr	the following values rochloric acid?	is most likely	to represer	nt the pH of	a dilute	
		Put a ring arou	nd the correct answer					
		рН 2	pH7	pH10		pH14	[1]	

3

[Turn over www.theallpapers.com

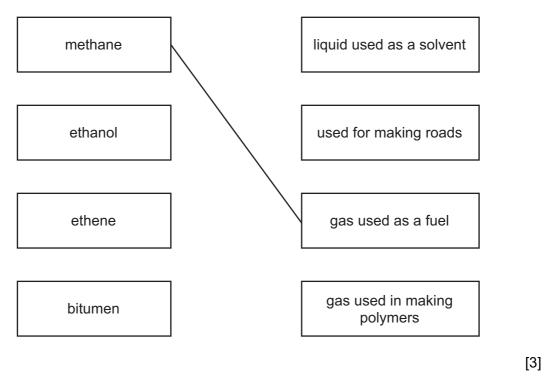
(v)) Complete the following equation for the reaction of hydromagnesium.	chloric acid with	
	Mg(s) + HCl (aq) \rightarrow MgCl ₂ (aq) + H ₂ ((g) [1]	
(vi)) Name the salt formed in this reaction.		
		[1]	

2 Two of the stages in water purification are filtration and chlorination. The diagram below shows a filter tank.

(c)	(i)	State the b	oiling	point of p	oure water					
										[2]
	(ii)	Describe a	chem	nical test	for water.					
		test								[1]
		result								[1]
	(iii)	State one	use of	f water in	the home					
										[1]
(d)	The	diagram sł	nows t	he arrang	gement of	particles	in the thre	e differe	nt states of wate	r.
) ()	0							
	L	A				В			c	
	Whi	ch of these	diagra	ams, A , E	3 or C , sho	ows water	r in a solid	state?		
										[1]
(e)		im reacts v reaction.	vith et	hene in tł	ne presend	ce of a ca	ıtalyst. Cor	nplete tł	ne word equation	for
	ethe	ne	+	steam	\rightarrow					[1]
(f)	Pota	issium read	cts vio	lently wit	h water. C	omplete t	he word e	quation	for this reaction.	
	pota	ssium	+	water	\rightarrow			+		
										[2]

3		en l		of calc	ium carbon	ate read	7 st with hyd	rochloric	acid, ca	bon diox	kide gas	is	For Examiner's Use
	1010			+	2HC <i>l</i> (aq)	\rightarrow	CaC <i>l</i> ₂(aq) +	CO ₂ (g)	+	H ₂ O(I)		
	(a)	Des	scribe a	a practi	cal method of reaction.							to	
												[4]	
	(b)	Wh	at effec	t will th	ne following	have on	the rate of	the react	ion?				
		(i)	increa	sing th	e temperatu	re							
		(ii)	adding	g water	to the acid								
		(iii)	using	powde	red calcium	carbona	te instead o	of lumps					
												[3]	
	(c)	Des	scribe a	ı test fo	or calcium io	ns.							
		res	ult										
		test											
			•••									[3]	

[Turn over www.theallpapers.com


- (d) Calcium can be obtained by the electrolysis of molten calcium chloride.
 - (i) Suggest why calcium must be extracted by electrolysis rather than by reduction with carbon.

[1]

(ii) Draw the electronic structure of an atom of calcium.

[2]

- 4 Organic substances have many uses.
 - (a) Match the substances in the boxes on the left with the descriptions in the boxes on the right. The first one has been done for you.

(b) Which one of the following would be least likely to be obtained from the fractional distillation of petroleum? Put a ring around the correct answer.

bitumen	ethane	ethanol	methane	[1]
---------	--------	---------	---------	-----

(c) Some reactions of organic compounds are shown below.

	Α	n CH ₂ =CH ₂		$ CH_2 - CH_2n$	
	В	C ₃ H ₈ + 5O ₂		3CO ₂ + 4H ₂ O	
	С	C ₆ H ₁₂ O ₆ glucose		$2CO_2 + 2C_2H_5OH$	
	D	C ₈ H ₁₈		$C_6H_{14} + C_2H_4$	
(i)	Which one of the re	actions, A , B ,	, C or D ,	shows fermentation?	
(ii)	Which one of the re	actions, A , B ,	, C or D ,	shows polymerization?	
(iii)	Which one of the re	actions, A , B ,	, C or D ,	shows combustion?	
(iv)	Which one of the re	actions, A , B ,	, C or D ,	shows cracking?	[4]
(d) The	hydrocarbon C ₈ H ₁₈	is an alkane.			
(i)	What is meant by th	ne term <i>hydrod</i>	carbon?		
(ii)	Explain why this hy	drocarbon is a	an alkane).	
					[2]

5 Look at the list of five elements below.

argon bromine chlorine iodine potassium

(a)	Put	these five elements in order of increasing proton number.		
				[1]
(b)	Put	these five elements in order of increasing relative atomic mass		
				[1]
(c)		e orders of proton number and relative atomic mass for the erent. Which one of the following is the most likely explanation		are
	Ticł	c one box.		
	The	proton number of a particular element may vary.		
	The	e presence of neutrons.		
	The	e atoms easily gain or lose electrons.		
		e number of protons must always equal the number of trons.		- 43
				[1]
(d)	Wh	ich of the five elements in the list are in the same group of the F	Periodic Table?	
				[1]
(e)	(i)	From the list, choose one element which has one electron in it	s outer shell.	
				[1]
	(ii)	From the list, choose one element which has a full outer shell	of electrons.	
				[1]

	12	For Examiner's
(f)	Which two of the following statements about argon are correct?	Use
	Tick two boxes.	
	Argon is a noble gas.	
	Argon reacts readily with potassium.	
	Argon is used to fill weather balloons.	
	Argon is used in light bulbs.	
(g)	Potassium chloride can be made by reacting potassium with chlorine. The bonding in potassium chloride is ionic.	
	What does this information tell you about	
	(i) the boiling point of potassium chloride,	
	[1]	
	(ii) the electrical conductivity of molten potassium chloride?	
	[1]	
(h)	Describe the change in the electronic structure of potassium and chlorine atoms when they combine to make potassium chloride.	
	change in potassium atom	
	change in chlorine atom	
	[2]	

	13	For Examiner's
	n is extracted from its ore in a blast furnace using carbon (coke) as a reducing agent and a source of heat.	Use
(a)	The coke burns in hot air. The equation for this reaction is	
	$2C(s)$ + $O_2(g)$ \rightarrow $2CO(g)$	
	State the name of the gas produced in this reaction.	
	[1]	
(b)	Near the top of the blast furnace, the iron(III) oxide in the iron ore gets reduced to iron.	
	$Fe_2O_3(s)$ + $3CO(g) \rightarrow 2Fe(I)$ + $3CO_2(g)$	
	Use the equation to explain why the change of iron(III) oxide to iron is a reduction reaction.	
	[1]	
(c)	In the hottest regions of the furnace, iron(III) oxide is reduced by carbon. Complete the equation for this reaction.	
	$Fe_2O_3(s) + C(s) \rightarrow Fe(l) + 3CO(g)$ [2]	

6

(d) The iron from the blast furnace contains up to 10% by mass of impurities. The main impurities are carbon, silicon and phosphorus. The diagram below shows one method of making steel from iron.

	oxygen and powdered basic oxides
	slag forming molten iron from blast furnace
A m	nixture of oxygen and basic oxides is blown onto the surface of the molten iron.
(i)	What is the purpose of blowing oxygen onto the molten iron?
	[1]
(ii)	A large amount of energy is released in the process of steelmaking. What name is given to chemical reactions which release energy?
	[1]
(iii)	The basic oxides react with the impurities in the iron and form a slag. What information in the diagram suggests that the slag is less dense than the molten iron?
	[1]
(iv)	Which one of the following is a basic oxide? Put a ring around the correct answer.
	calcium oxide carbon dioxide sulphur dioxide water [1]
(v)	Why is steel rather than iron used for constructing buildings and bridges?
	[1]

(e) Special steels contain added elements such as vanadium, chromium, cobalt or nickel. These are all transition metals.

State three properties of transition metals which are **not** shown by non-transition metals.

	1.		
	2.		
	3.		[3]
)	Wh	nat is the name given to metals which are mixtures of more than one metal?	

......[1]

(f)

DATA SHEET The Periodic Table of the Elements

								Gro	Group								
-	=											≡	≥	>	N	١١	0
							-										4
							т										He
							Hydrogen 1										Helium 2
7	6											1	12	14	16	19	20
Ξ	Be											Ш	ပ	z	0	ш	Ne
Lithium 3	4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Na	_											١٩	Si	٩	S	C1	Ar
Sodium 11	₽ 2	E										Aluminium 13	Silicon 14	Phosphorus 15	Sulphur 16	Chlorine 17	Argon 18
39	40	45	48	51	52	55	56	59	59	64		70	73	75	79	80	84
×	Ca	Sc	Ħ	>	ۍ	Mn	Fe	ပိ	ï	Cu	Zn	Ga	Ge				Kr
Potassium 19	m Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
85	88	68	91	93	96		101	103	106	108	112	115	119				131
Rb	S	≻	Zr	Νb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Rubidium 37	m Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46		Cadmium 48	Indium 49		Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204		209			
Cs	Ba	La	Hf	Та	3	Re	Os	Ir	Pt		Hg	11	Pb		Ро	At	Rn
Caesium 55	n Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78		Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
	226	227															
F	Ra	Ac															
Francium 87	n Radium 88	Actinium 89															
*58-71	*58-71 Lanthanoid series	id series		140	141	144		150	152	157	159	162	165	167	169	173	175
90-10	90-103 Actinoid series	series		မီ		Nd		Sm		Gd	Tb		Ho	Ъ ;			۲n
L				58 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	lerbium 65	Dysprosium 66	Holmium 67	Erbium 68	Ihulium 69	Ytterbium 70	Lutetium 71
		a = relative atomic mass	nic mass	232		238											
Key	×	X = atomic symbol	lodi	Th	Pa	D	Np				BĶ	ç	Es	Fm	Md	No	Ľ
	q	b = proton (atomic) number	nic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103
				The v	The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.)	one mole	of any ga	s is 24 dn	n ³ at roon	n tempera	ature and	pressure	(r.t.p.).				

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES) which is itself a department of the University of Cambridge.

16