(b)

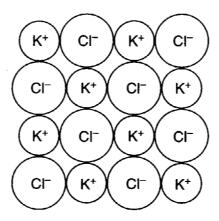
2.

3.

The diagram shows part of the Periodic Table.

ı	11						111	IV	٧	VI	VII	0
												He
Li							Γ	С	N	0	F	Ne
Na											Cl	Ar
K											Br	Kr
									_			

(a)	Answer these	questions	using	only the	elements	shown in	n the diagram.
-----	--------------	-----------	-------	----------	----------	----------	----------------


(i)	Write down the symbol for an element which contains diatomic molecules.	
(ii)	Write down the symbol for an element which forms a basic oxide.	
(iii)	Write down the symbol for an element with a smaller proton (atomic) number than lithium, Li.	
(iv)	Write down the symbol for an element which contains atoms with a full outer shell of electrons.	[4]
	scribe three things you would see when a small piece of sodium is added to a vater.	beake

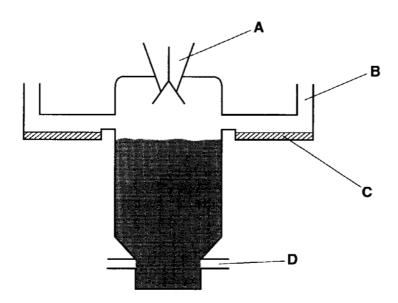
(c) Lithium (Li), sodium (Na), and potassium (K) are in the same group of the Periodic Table. The following table compares the properties and electronic structure of these elements. Suggest a value for the boiling point of sodium and complete the rest of the table.

element	boiling point /°C	reaction with water	electronic structure
lithium	1342	steady reaction	2.1
sodium		rapid reaction	
potassium	760		2.8.8.1

[3]

(d) When potassium burns in chlorine, potassium chloride is formed. Part of the structure of potassium chloride is shown below.

(i)	Describe the type of bonding in potassium chloride.	
		[1]
(ii)	State the simplest formula for potassium chloride.	
		[1]
(iii)	Explain why solid potassium chloride does not conduct electricity.	
		[1]
(iv)	A solution of potassium chloride was acidified with nitric acid. A few drops of silver nitrate solution were then added.	
	Describe what would be observed.	


Zinc is used to galvanise iron. It is also a component of many alloys.

(a)	(i)	Explain the meaning of the term <i>galvanise</i> .
(a)	(1)	
	/!!\	NA/h a t is the answer of solvenising in a 2
	(ii)	What is the purpose of galvanising iron?
		[1]
	(iii)	Which one of the following, A , B or C , is a correct representation of an alloy? Put a ring around the correct answer.
		A B C [1]
(b)	Zind	is a metal. State three physical properties that all metals have in common.
	1.	
	2.	
	3.	[o]
/ - \	7 :	[3]
(c)		is extracted from zinc sulphide ore. The ore is first heated in air. The oxygen in the eacts with the zinc sulphide.
		zinc sulphide + oxygen → zinc oxide + sulphur dioxide
	(i)	Which one of the substances in this equation causes acid rain if it escapes into the atmosphere?
		[1]
	(ii)	Write the formula for a molecule of oxygen.
		[1]
(d)	5 to	nnes of zinc oxide are needed to produce 4 tonnes of zinc.
/		culate the mass of zinc produced from 20 tonnes of zinc oxide.

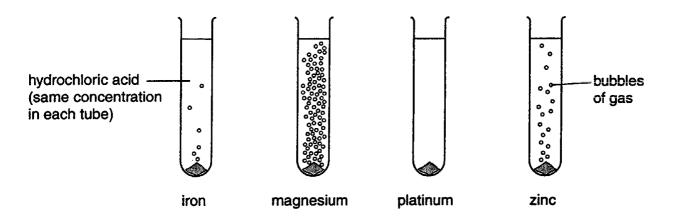
mass of zinc tonnes [1]

(e) Zinc is extracted by heating the zinc oxide with coke in a blast-furnace. Hot air is pumped through pipes near the bottom of the furnace. Zinc forms as a vapour which rises to the top of the furnace. The zinc condenses in pans at the top of the furnace. The diagram shows a blast-furnace used for extracting zinc.

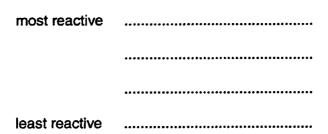
Answer the following questions using the letters, A, B, C or D from the diagram below.

	(i)	Where is the mixture of zinc oxide and coke added to the furnace?	
	(ii)	Where is the air blown in?	
	(iii)	Where does the zinc condense?	
			[3]
(f)		he blast-furnace, the coke reduces the zinc oxide to zinc. Some of the cokes no form carbon monoxide.	e also
	(i)	What is meant by reduction?	
			[1]
	(ii)	State the formula for carbon monoxide.	
			[1]

6


)	Exp	plain the meaning of the	terms	
	(i)	radioactive,		
	(ii)	isotope		
`	Stat	te one medical use of ra	adinactive isotopes	
		io one medical asc of te	adoactive isotopes.	
)	 Car	bon-14 has a nucleon (mass) number of 14.	
	Carl	bon-14 has a nucleon (
	Carl	bon-14 has a nucleon (nplete the table below to atom of carbon-14.	mass) number of 14. o show the type of charge ar	nd number of particles pro
	Carl	bon-14 has a nucleon (nplete the table below to atom of carbon-14. type of particle	mass) number of 14. o show the type of charge ar	nd number of particles pro

(d)		bon-14 slowly changes into atoms of nitrogen. These nitrogen atoms have rotons, 7 neutrons and 7 electrons.	e
	(i)	State the nucleon (mass) number of these nitrogen atoms.	11
	(ii)	Draw a diagram to show the arrangement of the electrons in a nitrogen atom.	٠,
		[:	2]
	(iii)	Name one other element having the same number of valency electrons a nitrogen.	is
			1]


Platinum is a shiny metal which was first discovered in Colombia in South America, where small amounts were found along with silver. Platinum is very unreactive but is very useful as a catalyst.

(a)	Suggest a use for platinum other than as a catalyst.
	[1]
(b)	What is the function of a catalyst?
	[1]

(c) A student compared the reactivity of different metals with dilute hydrochloric acid. The drawing shows the student's observations five seconds after each piece of metal had been added to the acid.

(i) Put the metals in order of their reactivity.

(ii) Complete the word equation for the reaction of magnesium with hydrochloric acid.

magnesium	+	hydrochloric acid	\rightarrow	 +	***************************************

(iii) Platinum is a transition element and magnesium is in Group II of the Periodic Table. Complete the following sentences about the physical properties of these two elements.

Platinum has a density than magnesium.

Magnesium has a boiling point than platinum.

[5]

(d)	Several substances which are harmful to the environment are found in the fumes from car exhausts. Platinum is used in the catalytic converters of cars to help remove some of these substances. State why the following substances are harmful to the environment.						
	(i)	carbon monoxide					
	(ii) nitrogen oxides						
((iii) lead compounds						
		[3]					

The element scandium, proton (atomic) number, Z = 21, was discovered by L Nilson in Sweden in 1879.

(a)	It fo	It forms only one ion which has the formula 21Sc3+.			
(i) How many electrons, protons and neutrons are there in this ion?					
		number of electrons			
		number of protons			
		number of neutrons			
	(ii)	Predict the electron distribution of this ion.			
		[4]			
(b)		main ore of scandium is thortveitite, $Sc_2Si_2O_7$. This is converted into scandium ride which reacts with calcium to produce scandium metal.			
	(i)	Balance the ionic equation for the reaction between scandium fluoride and calcium.			
		Ca +Sc ³⁺ \longrightarrow Ca ²⁺ +Sc [1]			
	(ii)	Which change in the above reaction is oxidation? Give a reason for your choice.			
		[2]			
	(iii)	An alternative method of extracting scandium is by the electrolysis of a molten mixture that contains scandium chloride. Write ionic equations for the reactions at the electrodes.			
		reaction at cathode			
		reaction at anode[2]			
(c)	com	density of scandium is 2.99 g/cm ³ and it has only one valency of three. Scandium apounds are white solids and form colourless solutions. Titanium is a more typical sition metal, predict how its properties would be different from those of scandium.			

	•••••				
	****	[2]			

Ger	mani	um is an element in Group IV. It was first isolated in Germany by C Winkler in 1886.
(a)		s a similar macromolecular structure to diamond. Predict two physical properties of nanium.
		[2]
(b)	•	ain why graphite, which is also a macromolecular form of carbon, has different sical properties to diamond and germanium.
		[2]
(c)	Drav	electron distribution of a germanium atom is 2.8.18.4. v a diagram to show the arrangement of the valency electrons in the covalent pound germanium tetrachloride.
		o to represent an electron from germanium. x to represent an electron from chlorine. [3]
(d) Germanium forms a series of saturated compounds with hydrogen whalkanes.		manium forms a series of saturated compounds with hydrogen which resemble the nes.
	(i)	Predict the general molecular formula of these compounds of germanium and hydrogen.
		[1]
	(ii)	Draw the structural formula for one of the above compounds that contains four germanium atoms per molecule.
		·

(e) When aqueous solutions of germanium(II) chloride and of iron(III) chloride are mixed, the following reaction occurs.

	GeCl ₂ + 2FeCl ₃ —	→ 2FeCl ₂ + GeCl ₄
or	$Ge^{2+} + 2Fe^{3+} \longrightarrow$	

(i)	Is the germanium(II) chloride acting as an oxidising agent or reducing agent?
	Explain your choice using the idea of electron transfer.

••••••	 	
(2)		

(ii)	Describe a test to show that an iron(III) salt had been changed into an iron(II) salt
	test
	result for iron(III)salt
	result for iron(II) salt

precipitate

```
a(i)
        N/O/F/CI/Br not N_2 etc
        Li / Na / K
(ii)
(iii)
        He
(iv)
        He / Ne / Ar / Kr
b
        any three observations such as
                floats on water
                moves about
                bursts into flame
                fizzes
                bubbles
                dissolves
                disappears
                goes into a ball
        boiling point
                                 reaction with water
                                                                  electronic structure
С
        900 - 1100
                                                                  2.8.1
                                 very vigorous
d(i)
        ionic / electrovalent
        KCI
(ii)
(iii)
        ions are not free to move
(iv)
        white
```

a(i)

(ii)

CO

```
(ii)
        prevents rusting / corrosion
(iii)
        Α
b
        any three from
                 conduct heat
                 conduct electricity
                 malleable
                 ductile
                 sonorous
                 shiny
        sulphur dioxide / SO<sub>2</sub>
c(i)
(ii)
        O_2
d
        16 tonnes
        Α
e(i)
(ii)
        D
(iii)
        С
f(i)
        removal of oxygen from a compound or substance
        gain of electrons
        decrease on oxidation number
```

addition of hydrogen

coating iron or other less reactive metal with zinc

- a(i) ionising particles given off or named radiation, α , β and γ
- (ii) atoms with the same number of protons / same element / same atomic number different numbers of neutrons / different mass numbers
- b any suitable such as
 finding out how well an organ is carrying out its function
 treating cancers
 sterilising surgical instruments
- c + 6 none 8 - 6
- d(i) 14
- (ii) diagram showing 2 electrons in inner shell, 5 electrons in outer shell
- (iii) any other group V element

- a any suitable use such as jewellery, electrodes, alloys
- b speeds up reaction / increases rate of reaction lowers activation energy / easier pathway for the reaction description of catalyst bringing molecules together on surface
- c(i) magnesium zinc iron platinum
- (i) magnesium chloride + hydrogen
- (ii) higher / greater density

 lower / smaller boiling point
- d(i) breathing difficulties / combines with red blood pigment
- (i) acid rain / forms nitrogen dioxide which is poisonous / damage to ozone layer
- (ii) harms nervous system / brain / poisonous

- a(i) 18e 21p 24n
- (ii) 2.8.8

b(i)
$$3Ca + 2Sc^{3+} \longrightarrow 3Ca^{2+} + 2Sc$$

(iii)
$$Sc^{3+} + 3e$$
 \longrightarrow Sc $2Cl^{-}$ \longrightarrow $Cl_2 + 2e$

c any two from

higher density coloured compounds / solution / ion more than one valency / oxidation state higher melting point catalytic activity

- a any two from
 hard
 high melting point
 poor conductor (heat and elecricity)
 brittle
- b consists of layers or planes or 2D macromolecules

weak bonds between layers or can slip

or delocalised electrons

- c 8e around Ge 8e around each Cl GeCl₄
- d(i) Ge_nH_{2n-2}
- (iii) in either format $\mbox{GeH}_3\mbox{-}\mbox{GeH}_2\mbox{-}\mbox{GeH}_2\mbox{-}\mbox{GeH}_2\mbox{-}\mbox{GeH}_3$

$$\begin{array}{c} \text{GeH}_3\text{-GeH-GeH}_3 \\ \text{I} \\ \text{GeH}_3 \end{array}$$

- e(i) reducing $Ge^{2^{-}} loses / donates electrons$ germanium loses / donates electrons $Ge^{2^{+}} 2e \longrightarrow Ge^{4^{+}}$ $Fe^{3^{+}} gains electrons$ iron gains electrons $Fe^{3^{+}} + e \longrightarrow Fe^{2^{+}}$
- (ii) <u>test</u> sodium hydroxide or aqueous ammonia <u>result for Fe(III) salt</u> brown precipitate <u>result for iron(II) salt</u> green precipitate