Core 1

Unwanted hair on a person's face can be removed by electrolysis.

The skin is given a small positive charge when the person holds on to a metal bar. The metal bar acts as a positive electrode. A needle is the negative electrode.

Core 1				
(d)	The chlo	liquid on the skin around the tip of the needle is mainly a solution of sodium ride.		
	(i)	Give the chemical formula for sodium chloride.		
		[1]		
	(ii)	Explain the meaning of the word <i>solution</i> .		
		[1]		
	(iii)	Sodium chloride can be made by adding an acid to an alkali.		
		Name an acid and alkali you can use to make sodium chloride.		
		acid		
		alkali[2]		
I	(iv)	Starting with this acid and alkali, describe how you can obtain sodium chloride crystals.		
		[2]		
(e)	Whe tip c	en the electrolysis is carried out on the surface of the skin, a gas forms around the f the needle.		

Name this gas.

 [1]	l
	-

Black lead sulphide is formed when oil paints containing lead compounds react with pollutants in the atmosphere.

When hydrogen peroxide is used to clean dirty oil paintings, the following reaction occurs.

 $PbS(s) + 4H_2O_2(aq) \rightarrow PbSO_4(s) + 4H_2O(l)$ lead hydrogen white compound sulphide peroxide

- (i) Name the white compound of lead formed in this reaction.
- (ii) Use the information in the equation to explain how you know the lead sulphide has been oxidised.

.....[1]

Alternative to Practical 1

The diagram shows the movement of the ions Na^+ and Cl^- during the electrolysis of molten sodium chloride.

.....[1]

When aqueous solutions of germanium(II) chloride and of iron(III) chloride are mixed, the following reaction occurs.

or	$GeCl_2 + 2FeCl_3 \longrightarrow 2FeCl_2 + GeCl_4$ $Ge^{2+} + 2Fe^{3+} \longrightarrow 2Fe^{2+} + Ge^{4+}$
(i)	Is the germanium(II) chloride acting as an oxidising agent or reducing agent? Explain your choice using the idea of electron transfer.
	[2]
(ii)	Describe a test to show that an iron(III) salt had been changed into an iron(II) salt.
	test
	result for iron(III)salt
	result for iron(II) salt
	[3]

(a) Copper is refined by electrolysis.

Fig. 4.1

Explain with equations why the electrodes change in mass and why the concentration of aqueous copper(II) sulphate rema¹ Fig. 1 ¹ nged. Fig. 1 ¹ (b) An alloy contains contains zinc and copper. A small sample of this alloy was dissolved in acid to give a solution containing zinc and copper ions. Explain what would happen when an excess of each of the following reagents is separately added to this solution. (i) iron filings
[2]
(ii) sodium hydroxide
[2]

(c) The following diagram shows a simple cell.

Core 1

- a(i) anode
- (ii) cathode
- b conducts electricity
- c does not conduct electricity (to operator) / plastic is an insulator / so operator does not get an electric shock
- d(i) NaCl
- (ii) substance dissolved in liquid / contains dissolved substance
- (iii) hydrochloric acid

sodium hydroxide / sodium carbonate / sodium bicarbonate

- (iv) add acid to the alkali until neutral / use titration evaporate off water / boil off water / leave to crystallise
- e hydrogen / H₂

Electrochemistry

Core 2

- (i) lead sulphate
- (ii) oxygen has been added to it

Electrochemistry

Alternative to Practical 1

- a B Cl⁻ attracted
- b Na⁺ / cation / positive ion
- c sodium chlorine
- d bubbles / silvery metal / green yellow gas

Electrochemistry

i reducing

germanium or Ge²⁺ loses / donates electrons

or Ge^{2+} - 2e \longrightarrow Ge^{4+}

iron or Fe³⁺ gains electrons

or Fe^{3+} + e \longrightarrow Fe^{2+}

ii sodium hydroxide or aqueous ammonia

iron (III) salt brown precipitate iron (II) salt green precipitate

(other possible reagents include iodide, thiocyanate, hexacyanoferrates, bromine, zinc, potassium manganate (VII)

Electrochemistry

а	three of these points
	Cu ²⁻ + 2e — Cu
	Cu - 2e Cu ²⁻
	ions removed at cathode
	ions formed at anode
b(i)	copper formed or iron dissolves
	zinc not displaced or iron does not react with zinc ions
(i)	blue precipitate of copper hydroxide
	white precipitate of zinc hydroxide
c(i)	produces electrical energy or voltage or current
	from chemical energy or chemical reactions
	or
	two different electrodes
	in electrolyte
(ii)	from magnesium to iron through external circuit

Electrochemistry