CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9702	42

Section A

- 1 (a) equatorial orbit / above equator
 satellite moves from west to east / same direction as Earth spins
 period is 24 hours / same period as spinning of Earth
 (allow 1 mark for 'appears to be stationary/overhead' if none of above marks scored)
 - (b) gravitational force provides/is the centripetal force B1 $GMm/R^2 = mR\omega^2$ or $GMm/R^2 = mv^2/R$ M1 $\omega = 2\pi / T$ or $v = 2\pi R / T$ or clear substitution M1 clear working to give $R^3 = (GMT^2 / 4\pi^2)$ A1 [4]
 - (c) $R^3 = 6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times (24 \times 3600)^2 / 4\pi^2$ C1 = 7.57×10^{22} C1 $R = 4.2 \times 10^7$ m A1 [3] (missing out 3600 gives 1.8×10^5 m and scores 2/3 marks)
- 2 (a) (i) 1. pV = nRT $1.80 \times 10^{-3} \times 2.60 \times 105 = n \times 8.31 \times 297$ C1 n = 0.19 mol A1 [2]
 - 2. $\Delta q = mc\Delta T$ $95.0 = 0.190 \times 12.5 \times \Delta T$ $\Delta T = 40 \text{ K}$ (allow 2 marks for correct answer with clear logic shown)
 - (ii) p/T = constant $(2.6 \times 10^5) / 297 = p / (297 + 40)$ M1 $p = 2.95 \times 10^5 \text{ Pa}$ A0 [1]
 - (b) change in internal energy is 120 J / 25 J
 internal energy decreases / ΔU is negative / kinetic energy of molecules decreases
 M1
 so temperature lower
 A1 [3]

	Page 3	3	Mark Scheme	Syllabus	Paper	•	
			GCE AS/A LEVEL – May/June 2013	9702	42		
3	(a) (i)	=	$2\pi / T$ $2\pi / 0.69$ 9.1 rad s ⁻¹ w use of $f = 1.5$ Hz to give $\omega = 9.4$ rad s ⁻¹)		C1 A1	[2]	
	(ii)		$x = 2.1 \cos 9.1t$ 2.1 and 9.1 numerical values use of cos		B1 B1	[2]	
			$v_0 = 2.1 \times 10^{-2} \times 9.1$ (allow ecf of value of x_0 from (ii)1.) = 0.19 m s ⁻¹ $v = v_0 \sin 9.1t$ (allow $\cos 9.1t$ if $\sin used in (ii)1.)$		B1 B1	[2]	
	(b) ene	=	either $\frac{1}{2}mv_0^2$ or $\frac{1}{2}m\omega^2x_0^2$ either $\frac{1}{2}\times 0.078\times 0.19^2$ or $\frac{1}{2}\times 0.078\times 9.1^2\times (2.1\times 10^{-1})$ 1.4×10^{-3} J	⁻²) ²	C1 A1	[2]	
4	(a) (i)	V =	q / 4πε ₀ R		B1	[1]	
	(ii)		pacitance is) ratio of charge and potential or q/V $q/V = 4\pi \varepsilon_0 R$		M1 A0	[1]	
	(b) (i)		$4\pi \times 8.85 \times 10^{-12} \times 0.45$ 50 pF		C1 A1	[2]	
	(ii)		er energy = $\frac{1}{2}$ CV^2 or energy = $\frac{1}{2}$ QV and $Q = CV$ rgy of spark = $\frac{1}{2} \times 50 \times 10^{-12} \{ (9.0 \times 10^5)^2 - (3.6 \times 10^5)^2 \}$ = 17 J		C1 C1 A1	[3]	
5			magnetic) flux normal to long (straight) wire carrying a conforce per unit length of 1 N m ⁻¹	urrent of 1 A	M1 A1	[2]	
	(b) (i)	sket	ch: concentric circles increasing separation (must show more than 3 circle correct direction (anticlockwise, looking down)	es)	M1 A1 B1	[3]	
	(ii)		$(4\pi \times 10^{-7} \times 6.3)$ / $(2\pi \times 4.5 \times 10^{-2})$ 2.8×10^{-5} T		C1 A1	[2]	
	(iii)		BIL ($\sin \theta$) 2.8 × 10 ⁻⁵ × 9.3 × 1		C1		
			$= 2.6 \times 10^{-4} \mathrm{N m^{-1}}$		A1	[2]	
	rea	ction	r unit length depends on product $I_\chi I_Y$ / by Newton's third are equal and opposite for both	law / action and	M1 A1	[2]	

Mark Scheme

Syllabus

Paper

Page 3

	Pa	ge 4	ļ	Mark Scheme	Syllabus	Paper	•				
				GCE AS/A LEVEL – May/June 2013	9702	42					
6	(a)			e.m.f. <u>proportional to rate</u> e of (magnetic) flux (linkage)		M1 A1	[2]				
	(b)	(i)	positive terminal identified (upper connection to load)								
		(ii)	ii) $V_P = \sqrt{2} \times V_{RMS}$ ratio = 240 $\sqrt{2}$ / 9 = 38 ($V_P = V_{RMS}$ / $\sqrt{2}$ gives ratio = 18.9 and scores 1/3) (ratio = 240 / 9 = 26.7 scores 1/3) (ratio = 9 / (240 / $\sqrt{2}$) = 0.0265 is inverted ratio and scores 1/3)								
	(c)	(i)	e.g. (output) p.d. / voltage / current does not fall to zero e.g. range of (output) p.d. / voltage / current is reduced (any sensible answer)								
		(ii)	sket	ch: same peak value at start of discharge correct shape between one peak and the next		M1 A1	[2]				
7	(a)		ch wavelength is associated with a discrete <u>change</u> in energy crete energy <u>change</u> / difference implies discrete levels								
	(b)	(i)	1.	arrow from –0.54 eV to –0.85 eV, labelled L		B1	[1]				
				arrow from –0.54 eV to –3.4 eV , labelled S (two correct arrows, but only one label – allow 2 marks) (two correct arrows, but no labels – allow 1 mark)		B1	[1]				
		(ii)	i) $E = hc / \lambda$ $(3.4 - 0.54) \times 1.6 \times 10^{-19} = (6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / \lambda$ $\lambda = 4.35 \times 10^{-7} \text{ m}$								
	(c)	-0. -0. 3 c	$\lambda = 4.35 \times 10^{-6}$ m $-1.50 \rightarrow -3.4 = 1.9 \text{ eV}$ $-0.85 \rightarrow -3.4 = 2.55 \text{ eV}$ (allow 2.6 eV) $-0.54 \rightarrow -3.4 = 2.86 \text{ eV}$ (allow 2.9 eV) 3 correct, 2 marks with -1 mark for each additional energy 2 correct, 1 mark but no marks if any additional energy differences								

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9702	42

8 (a) energy is given out / released on formation of the α -particle (or reverse argument) M1 either $E = mc^2$ so mass is less or reference to mass-energy equivalence **A1** [2] **(b) (i)** mass change = 18.00567 u - 18.00641 uC1 = 7.4×10^{-4} u (sign not required) Α1 [2] (ii) energy = $c^2 \Delta m$ = $(3.0 \times 10^8)^2 \times 7.4 \times 10^{-4} \times 1.66 \times 10^{-27}$ = 1.1×10^{-13} J C1 Α1 [2] (allow use of u = 1.67×10^{-27} kg) (allow method based on 1u equivalent to 930 MeV to 933 MeV) (iii) either mass of products greater than mass of reactants M1 this mass/energy provided as kinetic energy of the helium-4 nucleus A1 both nuclei positively charged (M1)or

energy required to overcome electrostatic repulsion

(A1)

[2]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9702	42

Section B

9	(a)	30	litres	→ 54 litres (allow ± 4 litres on both limits)	A1	[1]
	(b)	(i)		y 0.1 V change in reading for 10 litre consumption (or similar numbers) ove about 60 litres gradient is small compared to the gradient at about 40 litre	B1 es B1	[2]
		(ii)	volt	meter reading (nearly) zero when fuel is left meter reads only about 0.1 V when 10 litres of fuel left in tank oltmeter reads zero when about 4 litres of fuel left in tank" scores 2 marks)	C1 A1	[2]
10	(a)			of density and speed of sound / wave of medium and) speed of sound / wave in medium	M1 A1	[2]
	(b)			 Z₂) is small, mostly transmission Z₂) is large, mostly reflection (if 'mostly' not stated allow 1/2 marks for these first two marks) 	M1 M1	
		eith or	her	reflection / transmission also depends on $(Z_1 + Z_2)$ intensity reflection coefficient = $(Z_1 - Z_2)^2 / (Z_1 + Z_2)^2$	A1	[3]
	(c)			aller structures can be distinguished e better resolution at shorter wavelength / higher frequency	B1 B1	[2]
11	(a)			g voltage changes energy / speed of <u>electrons</u> g electron energy changes maximum X-ray photon energy	M1 A1	[2]
	(b)	(i)	1.	loss of power / energy / intensity	В1	[1]
			2.	intensity changes when beam not parallel decreases when beam is divergent	C1 A1	[2]
		(ii)		to = (exp { -2.9×2.5 }) / (exp { -0.95×6.0 }) = 0.21 (min. 2 sig. fig.) Hues of both lengths incorrect by factor of 10^{-2} to give ratio of 0.985 scores 1	C1 A1 mark)	[2]

Page 7						Mar	k Sch	neme			Syllabus	Paper	•		
GCE AS/A LEVEL – May/June 2013								June 2013		9702	42				
12	(a)				simu them						nber ne transmissic	on line)		B1 B1	[2]
	(b)	(i)	01	11										A1	[1]
		(ii)	01	10										A1	[1]
	(c)	lev	els s	how	n										
			t	0	0.2	0.4	0.6	0.8	1.0	1.2					
				0	8	7	15	6	5	8					
		cor wit	rect า lev	basi els s	erroi c sha staying s in s	pe of g con	grapł stant	n í.e. s durin	g corr	ect tii	me intervals			A2 M1 A1	[4]
	(d)	inc	reas	ing s	umbe ampli n of si	ng fre	equen	icy re	duces		ht depth / width	ı		M1 M1 A1	[3]