CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9702	41

Section A

1 (a) region of space area / volume **B**1 where a mass experiences a force **B1** [2] (b) (i) force proportional to product of two masses M1 force inversely proportional to the square of their separation M1 either reference to point masses or separation >> 'size' of masses Α1 [3] (ii) field strength = GM/x^2 or field strength $\propto 1/x^2$ C1 ratio = $(7.78 \times 10^8)^2 / (1.5 \times 10^8)^2$ C1 **A1** [3] (c) (i) either centripetal force = $mR\omega^2$ and $\omega = 2\pi / T$ centripetal force = mv^2 / R and $v = 2\pi R / T$ **B1** gravitational force provides the centripetal force **B1** either GMm / $R^2 = mR\omega^2$ or GMm / $R^2 = mv^2$ / R M1 $M = 4\pi^2 R^3 / GT^2$ Α0 [3] (allow working to be given in terms of acceleration) (ii) $M = \{4\pi^2 \times (1.5 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (3.16 \times 10^7)^2\}$ C₁ $= 2.0 \times 10^{30} \text{kg}$ **A1** [2] 2 (a) obeys the equation $pV = \text{constant} \times T \text{ or } pV = nRT$ M1 p, V and T explained Α1 at all values of p, V and T/fixed mass/n is constant Α1 [3] **(b) (i)** $3.4 \times 10^5 \times 2.5 \times 10^3 \times 10^{-6} = n \times 8.31 \times 300$ M1 $n = 0.34 \, \text{mol}$ **A0** [1] (ii) for total mass/amount of gas $3.9 \times 10^5 \times (2.5 + 1.6) \times 10^3 \times 10^{-6} = (0.34 + 0.20) \times 8.31 \times T$ C1 $T = 360 \, \text{K}$ **A1** [2] (c) when tap opened gas passed (from cylinder B) to cylinder A **B1** work done on gas in cylinder A (and no heating) M1 so internal energy and hence temperature increase Α1 [3]

	Pa	ge 3	Mark Scheme	Syllabus	Paper	
		_	GCE AS/A LEVEL – May/June 2013	9702	41	
3	(a)	(i) 1.	amplitude = 1.7 cm		A1	[1]
		2.	period = 0.36cm frequency = $1/0.36$ = 2.8Hz		C1 A1	[2]
		(ii) a = acc	$(-)\omega^2 x$ and $\omega = 2\pi/T$ eleration = $(2\pi/0.36)^2 \times 1.7 \times 10^{-2}$ = $5.2 \mathrm{m s^{-2}}$		C1 M1 A0	[2]
	(b)		straight line, through origin, with negative gradient from $(-1.7 \times 10^{-2}, 5.2)$ to $(1.7 \times 10^{-2}, -5.2)$ not reasonable, do not allow second mark)		M1 A1	[2]
	(c)	or $\frac{1}{2}m\omega^{2}(x)$ $x_{0}^{2} = 2x$	$\frac{1}{2}m\omega^{2}(x_{0}-x^{2}) = \frac{1}{2} \times \frac{1}{2}m\omega^{2}x_{0}^{2} \text{ or } \frac{1}{2}m\omega^{2}x^{2} = \frac{1}{2} \times \frac{1}{2}m\omega^{2}x_{0}^{2}$ $\frac{1}{2}x_{0}^{2} = 2x^{2}$ $\frac{1}{2}x_{0}^{2} = \frac{1}{2}x_{0}^{2} = \frac{1}{2}$			
		= 1.20	cm		A1	[3]
4	(a)	work do		M1 A1	[2]	
	(b)) kinetic energy = change in potential energy qV leading to $v = (2Vq/m)^{\frac{1}{2}}$		B1 B1	[2]
	(c)	either	$(2.5 \times 10^5)^2 = 2 \times V \times 9.58 \times 10^7$ V = 330 V this is less than 470 V and so 'no'		C1 M1 A1	[3]
		or	$v = (2 \times 470 \times 9.58 \times 10^{7})$ $v = 3.0 \times 10^{5} \text{m s}^{-1}$ this is greater than $2.5 \times 10^{5} \text{m s}^{-1}$ and so 'no'		(C1) (M1) (A1)	
		or	$(2.5 \times 10^5)^2 = 2 \times 470 \times (q/m)$ $(q/m) = 6.6 \times 10^7 \mathrm{Ckg^{-1}}$ this is less than $9.58 \times 10^7 \mathrm{Ckg^{-1}}$ and so 'no'		(C1) (M1) (A1)	

	Page 4			Mark Scheme	Syllabus	Paper		
				GCE AS/A LEVEL – May/June 2013	9702	41		
5	(a)			magnetic) flux normal to long (straight) wire carrying a conforce per unit length of 1 N m ⁻¹	current of 1 A	M1 A1	[2]	
	(b)	(i)	flux	density = $4\pi \times 10^{-7} \times 1.5 \times 10^{3} \times 3.5$ = 6.6×10^{-3} T		C1 A1	[2]	
		(ii)	flux	linkage = $6.6 \times 10^{-3} \times 28 \times 10^{-4} \times 160$ = 3.0×10^{-3} Wb		C1 A1	[2]	
	(c)	(i)	•	uced) e.m.f. proportional to rate of age of (magnetic) flux (linkage)		M1 A1	[2]	
		(ii)	e.m.	f. = $(2 \times 3.0 \times 10^{-3}) / 0.80$ = $7.4 \times 10^{-3} \text{ V}$		C1 A1	[2]	
6	(a)	(i)	(i) to reduce power loss in the core due to eddy currents/induced currents					
		(ii)	eithe or	er no power loss in transformer input power = output power		B1	[1]	
	(b)	either r.m.s. voltage across load = $9.0 \times (8100 / 300)$ peak voltage across load = $\sqrt{2} \times 243$					101	
		or		$= 340 \text{ V}$ peak voltage across primary coil} $= 9.0 \times \sqrt{2}$ peak voltage across load $= 12.7 \times (8100/300)$ $= 340 \text{ V}$		A1 (C1) (A1)	[2]	
7	(a)	(i)		est frequency of e.m. radiation ag rise to emission of electrons (from the surface)		M1 A1	[2]	
		(ii)	E = 1	hf		C1		
		threshold frequency = $(9.0 \times 10^{-19}) / (6.63 \times 10^{-34})$ = $1.4 \times 10^{15} \text{ Hz}$				A1	[2]	
	(b)	or or		$300 \text{nm} \equiv 10 \times 10^{15} \text{Hz}$ (and $600 \text{nm} \equiv 5.0 \times 10^{14} \text{Hz}$) $300 \text{nm} \equiv 6.6 \times 10^{-19} \text{J}$ (and $600 \text{nm} \equiv 3.3 \times 10^{-19} \text{J}$) zinc $\lambda_0 = 340 \text{nm}$, platinum $\lambda_0 = 220 \text{nm}$ (and sodium λ_0 from sodium and zinc	= 520 nm)	M1 A1	[2]	
	(c)	few	er ph	oton has larger energy otons per unit time ectrons emitted per unit time		M1 M1 A1	[3]	

	Page 5		;	Mark Scheme	Syllabus	Paper 41	
				GCE AS/A LEVEL – May/June 2013 9702			
8	(a)		wo (light) nuclei combine o form a more massive nucleus			M1 A1	[2]
	(b)	(i)	Δm energy	= $(2.01410 \text{ u} + 1.00728 \text{ u}) - 3.01605 \text{ u}$ = $5.33 \times 10^{-3} \text{ u}$ $y = c^2 \times \Delta m$ = $5.33 \times 10^{-3} \times 1.66 \times 10^{-27} \times (3.00 \times 10^8)^2$ = $8.0 \times 10^{-13} \text{ J}$		C1 C1	[3]
		(ii)		kinetic energy of proton and deuterium must be very to the nuclei can overcome electrostatic repulsion	arge	B1 B1	[2]
				Section B			
9	(a)	(i)	light-de	ependent resistor/LDR		B1	[1]
		(ii)	strain	gauge		B1	[1]
		(iii)	quartz	/piezo-electric crystal		B1	[1]
	(b)	(i)	resista etiher or	ince of thermistor decreases as temperature increses $V_{\text{OUT}} = V \times R / (R + R_{\text{T}})$ current increases and $V_{\text{OUT}} = IR$		M1 A1	
				ncreases		A1	[3]
		(ii)	either or so cha	change in $R_{\rm T}$ with temperature is non-linear $V_{\rm OUT}$ is not proportional to $R_{\rm T}/$ change in $V_{\rm OUT}$ with $F_{\rm DUT}$ inge is non-linear	$R_{\!\scriptscriptstyle T}$ is non-linear	M1 A1	[2]
10	(a)			how well the edges (of structures) are defined ifference in (degree of) blackening between structures	;	B1 B1	[2]
	(b)	(b) e.g. scattering of photos in tissue/no use of a collimator/no use of lead grid large penumbra on shadow/large area anode/wide beam large pixel size					
				vo sensible suggestions, 1 each)		B2	[2]
	(c)	(i)		$e^{-\mu x}$ = exp(-2.85 × 3.5) / exp(-0.95 × 8.0) = (4.65 × 10 ⁻⁵) / (5.00 × 10 ⁻⁴)		C1 C1	
				= 0.093		A1	[3]
		(ii)	or	large difference (in intensities) ratio much less than 1.0 od contrast		M1 A1	[2]
	(answer given in (c)(ii) must be consistent with ratio given in (c)(i))						

	Page 6		6		Mark Scheme	Syllabus	Paper	•
				GCE AS/A LEVEL – May/June 2013 9702		41		
11	(a)	(i)		litude of the carrier ynchrony) with the	wave varies displacement of the information sign	al	M1 A1	[2]
		(ii)		enables shorter aer	ss power required/less attenuation	n/less interference	B2	[2]
	(b)	(i)		uency = 909 kHz			C1	(-)
			wav	elength = (3.0 × 10 = 330 m)°) / (909 × 10°)		A1	[2]
		(ii)	band	dwidth = 18 kHz			A1	[1]
		(iii)	frequ	uency = 9000 Hz			A1	[1]
12	(a) for received signal, $28 = 10 \lg(P / \{0.36 \times 10^{-6}\})$ $P = 2.3 \times 10^{-4} \text{ W}$						C1 A1	[2]
	(b) loss in fibre = $10 \lg(\{9.8 \times 10^{-3}\} / \{2.27 \times 10^{-4}\})$ = $16 dB$						C1 A1	[2]
	(c)	atte	enuati	on per unit length	= 16 / 85 = 0.19 dB km ⁻¹		A1	[1]