MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/41 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2				Syllabus	Paper			
				GCE AS/A LEVEL – May/June 2011 970		41		
Section A								
1	(a)	(i)	(i) force proportional to product of masses force inversely proportional to square of separation			B1 B1	[2]	
		(ii)	sepa	aration <u>much</u> greater than radius / diameter of Sun / pla	anet	B1	[1]	
	(b)	(i)		force or field strength \propto 1 / r^2 ential \propto 1 / r		B1	[1]	
		(ii)		gravitational force (always) attractive tric force attractive or repulsive		B1 B1	[2]	
2	(a)			of atoms of carbon-12 kg of carbon-12		M1 A1	[2]	
	(b)	pV = NkT or $pV = nRTsubstitutes temperature as 298Keither 1.1 × 105 × 6.5 × 10-2 = N × 1.38 × 10-23 × 298$						
		or N =		$.1 \times 10^5 \times 6.5 \times 10^{-2} = n \times 8.31 \times 298$ and $n = N / 6.02 \times 10^{24}$	× 10 ²³	C1 A1	[4]	
3	(a)	acc	elera	tion / force proportional to displacement from a fixed point / force (always) directed towards that fixed point /		M1 A1	[0]	
		direction to displacement					[2]	
	(b)	(i)	nega	/ m is a constant and so acceleration proportional to x ative sign shows acceleration towards a fixed point / in ction to displacement	opposite	B1 B1	[2]	
		(ii)		$= (A \rho g / m)$		C1 C1		
				$\pi \times 1.5)^2 = (\{4.5 \times 10^{-4} \times 1.0 \times 10^3 \times 9.81\} / m)$		C1 A1	[4]	
4	(a)	work done in bringing unit positive charge from infinity (to that point)			M1 A1	[2]		
	(b)	(i)	field	strength is potential gradient		B1	[1]	
		(ii)	pote	strength proportional to force (on particle Q) ential gradient proportional to gradient of (potential ene prce is proportional to the gradient of the graph	rgy) graph	B1 B1 A0	[2]	

Page 3			}	Mark Scheme: Teachers' version	Syllabus	Paper	ər	
				GCE AS/A LEVEL – May/June 2011	9702	41		
	(c)	pote 5.1	ential × 1.6	$5.1 \times 1.6 \times 10^{-19}$ (J) energy = $Q_1 Q_2 / 4\pi \varepsilon_0 r$ $\times 10^{-19} = (1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times r$ 10^{-10} m		C1 C1 C1 A1	[4]	
	(d)	(i)		k is got out as <i>x</i> decreases pposite sign		M1 A1	[2]	
		(ii)		gy would be doubled lient would be increased		B1 B1	[2]	
5	(a)	 a) region (of space) where there is a force either on / produced by magnetic pole 				M1		
	or (n / produced by current carrying conductor / moving ch	narge	A1	[2]	
	(b)	(i)		e on particle is (always) normal to velocity / direction of ed of particle is constant	f travel	B1 B1	[2]	
		(ii)	mν²	netic force provides the centripetal force / r = Bqv nv / Bq		B1 M1 A0	[2]	
	(c)	(i)	direa	ction from 'bottom to top' of diagram		B1	[1]	
		(ii)	ratio	us proportional to momentum = 5.7 / 7.4		C1		
			= 0.7 (ans	77 swer must be consistent with direction given in (c)(i))		A1	[2]	
6	(a)	(i)	to co	oncentrate the (magnetic) flux / reduce flux losses		B1	[1]	
		(ii)		nging flux (in core) induces current in core ents in core give rise to a heating effect		M1 A1	[2]	
	(b)	(i)		f. induced proportional to of change of (magnetic) flux (linkage)		M1 A1	[2]	
		(ii)	e.m.	netic flux in phase with / proportional to e.m.f. / curren f. / p.d. across secondary proportional to rate of chang .m.f. of supply not in phase with p.d. across secondary	e of flux	M1 M1 A0	[2]	
	(c)	(i)		ame power (transmission), high voltage with low curre low current, less energy losses in transmission cables		B1 B1	[2]	
		(ii)	volta	age is easily / efficiently changed		B1	[1]	

	Page	4	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9702	41	
7			ve, electron can 'collect' energy continuously ve, electron will always be emitted /		B1	
			will be emitted at all frequencies ufficiently long delay		M1 A1	[3]
	(b) (i)) eithe or or	er wavelength is longer than threshold wavelength frequency is below the threshold frequency photon energy is less than work function		B1	[1]
						1.1
	(ii)	(6.6	$\lambda = \phi + E_{MAX}$ 3 × 10 ⁻³⁴ × 3.0 × 10 ⁸) / (240 × 10 ⁻⁹) = ϕ + 4.44 × 10 ⁻¹⁹ 3.8 × 10 ⁻¹⁹ J (<i>allow</i> 3.9 × 10 ⁻¹⁹ J)		C1 C1 A1	[3]
	(c) (i)	nhot	on energy larger		M1	
	(-) (-)	•	naximum) kinetic energy is larger		A1	[2]
	(ii)		er photons (per unit time) maximum) current is smaller		M1 A1	[2]
8	(a) (i)	Fes	hown near peak		A1	[1]
	(ii)	Zrs	nown about half-way along plateau		A1	[1]
	(iii)) H sh	own at less than 0.4 of maximum height		A1	[1]
	(b) (i)		/y / large nucleus breaks up / splits two nuclei / fragments of approximately equal mass		M1 A1	[2]
	(ii)		ing energy of nucleus = $B_{\rm E} \times A$		B1	
			ing energy of parent nucleus is less than sum of bindin agments	ig energies	B1	[2]

	Page 5			Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2011	Syllabus 9702	Paper 41	
Section B				GCE AS/A LEVEL – May/June 2011	9702	41]
9	(a)			are two potentials / voltages epends upon which is greater		M1 A1	[2]
	(b)	(i)		stance of thermistor = $2.5 \text{k}\Omega$ stance of X = $2.5 \text{k}\Omega$		C1 A1	[2]
		(ii)	so V at 20 V _{OUT}	°C / at < 10 °C, $V^- > V^+$ V_{OUT} is -9V D°C / at > 10 °C, $V^- < V^+$ and V_{OUT} is +9V T switches between negative and positive at 10 °C w similar scheme if 20 °C treated first)		M1 A1 B1 B1	[4]
10	(a)	pro	duct o	of density (of medium) and speed of sound (in the med	ium)	B1	[1]
	(b)			be nearly equal to 1 eflected intensity would be nearly equal to incident inte	nsity	M1	
		<i>or</i> trar		oefficient for transmitted intensity = $(1 - \alpha)$ ed intensity would be small	-	M1 A1	[3]
	(c)	(i)	α = = 0.0	(1.7 – 1.3) ² / (1.7 + 1.3) ² 018		C1 A1	[2]
		(ii)	0.01	nuation in fat = exp(-48 × 2x × 10 ⁻²) 2 = 0.018 exp(-48 × 2x × 10 ⁻²) 0.42 cm		C1 C1 A1	[3]
11	(a)			y of carrier wave varies prony) with the displacement of the information signal		M1 A1	[2]
	(b)	(i)	5.0\	/		A1	[1]
		(ii)	640	kHz		A1	[1]
		(iii)	560	kHz		A1	[1]
		(iv)	7000	0 (condone unit)		A1	[1]
12	(a)	e.g.	shie	as 'return' for the signal lds inner core from noise / interference / cross-talk <i>two sensible</i> answers, 1 each, max 2)		B2	[2]
	(b)	e.g.	less less	nter bandwidth attenuation (per unit length) noise / interference v two sensible answers, 1 each, max 2)		B2	[2]
	(c)	atte	enuati	on is 2.4 dB on = $10 \log(P_1/P_2)$		C1 C1 A1	[3]

© University of Cambridge International Examinations 2011 www.theallpapers.com