

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level

PHYSICAL SCIENCE 8780/03

Paper 3

For Examination from 2011

SPECIMEN MARK SCHEME

Duration

MAXIMUM MARK: 80


```
1
                                                                                                                      [1]
    (a) 1.7 %
     (b) use of density = mass / volume (= 580 / 6^3)
                                                                                                                      [1]
          = 2.685 \text{ g cm}^{-3} \dots \text{ (allow 2.68, 2.69, 2.7)}
                                                                                                                      [1]
          % uncertainty in volume = 3 \times (0.1 / 6) \times 100 = 5.0\%
                                                                                                                      [1]
          (\rightarrow uncertainty in density = 0.18 g cm^{-3})
          density = 2.7 \pm 0.2 \text{ g cm}^{-3}
                                                                                                                      [1]
          (e.c.f and answer 2.69 ± 0.18 g cm<sup>-3</sup> scores 3/4 marks)
                                                                                                              [Total: 5]
2
     (a) ball moving in opposite direction (after collision)
                                                                                                                      [1]
     (b) (i) change in momentum = 1.2 (4.0 + 0.8)
                                                                                                                      [2]
               (correct values, 1 mark; correct sign {values added}, 1 mark)
               = 5.76 N s ... (allow 5.8)
                                                                                                                      [1]
          (ii) force = \Delta p / \Delta t or m\Delta v / \Delta t
                                                                                                                      [1]
               = 5.76 / 0.08 or 1.2 \times 4.8 / 0.08
                                                                                                                      [1]
               = 72 N
                                                                                                                      [1]
     (c) 5.76 = 3.6 \times v
                                                                                                                      [1]
          v = 1.6 \text{ m s}^{-1}
                                                                                                                      [1]
     (d) (total) kinetic energy not conserved
                                                                                                                      [1]
                                                                                                            [Total: 10]
     (a) carbonates become more stable down the Group/higher decomposition temperature
3
                                                                                                                      [1]
          cation/M<sup>2+</sup> radius/size increases down the group/M<sup>2+</sup> charge density decreases
                                                                                                                      [1]
          anion/carbonate ion/CO<sub>3</sub><sup>2-</sup> suffers less polarisation/distortion
                                                                                                                      [1]
     (b) (i) Cu
                           57.7/63.5
                                           = 0.91
                                                                 correct ratios
                                                                                                                      [1]
               0
                           36.2/16
                                           = 2.26
               С
                           5.4/12
                                           = 0.45
                           0.9/1
                                           = 0.90
                                                                 hence Cu<sub>2</sub>O<sub>5</sub>CH<sub>2</sub>
                                                                                                                      [1]
          (ii) Cu^{2+}(aq) or [Cu(H_2O)6]^{2+} NOT [Cu(H_2O)_4]^{2+}
                                                                                                                      [1]
         (iii) D is CuO / copper(II) oxide
                                                                                                                      [1]
               Cu_2O_5CH_2 \rightarrow 2CuO + CO_2 + H_2O [1]
                                                                                                                      [1]
                           \rightarrow 159 (both M_{\rm r}s)
                221
                                                                                                                      [1]
                .: 10
                            \rightarrow 10 × 159 / 221 = 7.2 g (7.19)
                                                                                                                      [1]
         (iv) E is copper; F is Fe2+ / Fe SO4
                                                                                                                      [1]
               Fe + Cu^{2+} \rightarrow Fe^{2+} + Cu (or full equation)
                                                                                                                      [1]
          (v) redox/displacement
                                                                                                                      [1]
```

[Total: 13]

				[Tota	al: 7]			
	(d)	bac bala	ess (hence uncontrolled) nitrates leach out of fields into streams, seas (1) teria or algae grow fast/use oxygen/clog up water (1) ance destroyed/fish unable to live (1) cess called eutrification (1)	any 2	[2]			
	(c)	(c) too high a temp and equilibrium favours LHS, less ammonia at equilibrium too low a temp, rate too slow/not enough molecules have E _a						
	(b)	 b) pressure. 5O atm / 50000 Pa/N m⁻³ upwards; temp 400-600 °C; catalyst of iron (1 mark for 2 correct; 2 marks for all 3 conditions correctly stated) 						
6		exo	$+3H_2 \rightleftharpoons 2NH_3$ thermic		[1] [2]			
				[Tota	al: 6]			
		(iv)	endothermic reactions $\Delta H > 0$		[1]			
			from eqn in (a)(i): +90 kJ mol ⁻¹ for each C=C formed (could be multiples of 9	90)				
		(iii)	bonds broken: $4(C-C) = 4 \times 350 = 1400 \text{ kJ mol}^{-1}$ bond formed: $2(C=C) = 2 \times 610 = 1220 \text{ kJ mol}^{-1}$ $\Delta H = +180 \text{ kJ mol}^{-1}$		[1]			
		(ii)	heat + catalysts/SiO $_2$ /A l_2 O $_3$ /Pt/ceramic/pumice/zeolite etc. If temp given >50	00 °C	[1]			
	(b)	(i)	$e.g. \ C_{40}H_{82} \rightarrow C_{16}H_{34} + 2 \ C_{12}H_{24} \textbf{OR} C_{40}H_{82} \rightarrow C_{16}H_{34} + C_{24}H_{48} etc$		[1]			
		(ii)	8		[1]			
5	(a)	(i)	CH ₂ =CH–CH ₂ CH ₂ CH ₃ / pent-1-ene accept C ₃ H ₇ on RHS		[1]			
				[Tota	al: 6]			
	(6)	wa\ min	wavelength changes from 33 cm to 8.25 cm minimum when λ = (56 cm,) 18.7 cm, 11.2 cm, (8.0 cm) so two minima					
	(b)	path difference between waves from S_1 and S_2 = 28 cm						
			er same amplitude / intensity at M atio of amplitudes is 1.28 / ratio of intensities is 1.28		[1]			
4	(a)		er phase difference is π rad / 180° path difference (between waves from S_1 and S_2) is ½ λ or $(n + \frac{1}{2})\lambda$		[1]			

7	(a)	(i)	arrow in upward	direction, foot near P	[1]	
		(ii)		nsistent with (i) between plates th no kink at change-over)	[1] [1]	
	(b)	(i)	F = E q = $5.0 \times 10^4 \times 1.6$	5 ×10 ⁻¹⁹	[1]	
			$= 8.0 \times 10^{-15} \mathrm{N}$		[1]	
		(ii)	a = F/m = $(8.0 \times 10^{-15})/(9$	0.1 × 10 ⁻³¹)	[1]	
		= $(8.0 \times 10^{-15})/(9.1 \times 10^{-31})$ = 8.8×10^{15} m s ⁻²		[1]		
					[Total: 7]	
8	(a)	a) use of either $P = VI$ and $V = IR$ or $P = V^2 / R$ resistance = 38.4 Ω				
	(b)	3.0 0.7	o kW kW 5 kW 5 kW	[1] [1] [1] [1]		
					[Total: 7]	
9	(a)	(i)	orange ppt	allow red to yellow/crystals or solid	[1]	
		(ii)	ketone		[1]	
		(iii)	CH ₃ CH ₂ COCH ₃	or butanone	[1]	
	(b)	(i)	NaBH₄ allow Na	AlH_4 (Li Al H_4) (1) H_2/Ni or Pt	[1]	
		(ii)	secondary alcoh	ol	[1]	
		(iii)	CH ₃ CH(OH)CH ₂	CH ₃	[1]	
					[Total: 6]	

10	(a)	(i)	energy/enthalpy change when 1 mol of a compound is formed from its elements at 298 K / 25°C and100 kP / 1 atm	[1] [1]		
		(ii)	$H_2(g) + \frac{1}{2} O_2(g) \downarrow H_2O(I)$	[1]		
	(b)	(i)	Ca + $2H_2O \rightarrow Ca(OH)_2 + H_2$	[1]		
		(ii)	heat released = $mc\Delta T$ = 200 × 4.2 × 12.2 = 10.25 kJ	[1]		
		(iii)	$\Delta H = (-10.25) \div 1.00 / 40.1 = -411 \text{ kJ mol}^{-1} \text{ sign necessary}$ for ecf, $\Delta H_{\text{reacn}} = 40.1 \times [\text{answer to } (\textbf{b})(\textbf{ii})]$	[1]		
		(iv)	V = nRT/P	[1]		
			$= \frac{(1/40.1) \times 8.31 \times 300}{1 \times 10^5} \qquad 6.22 \times 10^{-4} \text{ m}^3$	[1]		
		allow ecf on error in moles of Ca in (b)(iii) and on error in equation in (b)(i)				
			[To	otal: 8]		
11	(a)	e of decay/activity/decay (of nucleus) is not affected by external factors states specific factor(s), such as temperature/pressure/chemical bonding ratheing general statement above, then give 2 marks for two stated factors, but 1 marke factor stated)				
	(b)	(i)	gamma/γ	[1]		
		(ii)	alpha/ α	[1]		
		(iii)	gamma/γ	[1]		
			[To	otal: 5]		

BLANK PAGE