UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS
General Certificate of Education
Advanced Subsidiary Level

MAXIMUM MARK: 30

1 (a) micrometer (screw gauge)/travelling microscope
(b) either ohm-meter or voltmeter and ammeter or multimeter/avo on ohm setting
(c) either (calibrated) c.r.o. or a.c. voltmeter and $\times \sqrt{ } 2$
$2 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$

3 (a)

ionic bonding
correct ions and shape
(b) molten NaCl has mobile ions which conduct; in solid NaCl the ions are fixed in place

4 (a) $\mathrm{C}_{6} \mathrm{H}_{10}$
(b) $\%$ carbon $=(82 / 72) \times 100=87.8 \%$

5 (air) resistance increases with speed resultant/accelerating force decreases

6 (a) 90°
(b) $130=F \times 0.45$ (allow e.c.f. for angle in (i)) $F=290 \mathrm{~N}$
(allow 1 mark only if angle stated in (i) is not used in (ii))

7 (a) elimination
(b) (i) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
(ii) $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$

8 the (only) intermolecular force present is van der Waals' forces
vdW increase with increase in number of electrons in S8 compared to Cl2.

9 when a wave (front) is incident on an edge/obstacle/slit/gap
wave 'bends' into the geometrical shadow/changes direction/spreads

10 (a) most α-particles deviated through small angles (accept 'undeviated')
few α-particles deviated through angles greater than $90^{\circ} /$ large angles
(b) (i) allow $10^{-9} \mathrm{~m} \rightarrow 10^{-11} \mathrm{~m}$
(ii) allow $10^{-13} \mathrm{~m} \rightarrow 10^{-15} \mathrm{~m}$
(if (i) and (ii) out of range but (ii) = (i) $\times 10^{-4}$ or 10^{-5} then allow 1 mark) (if no units or wrong units but (ii) $=($ ($) \times 10^{-4}$ or 10^{-5} then allow 1 mark)

11 add aqueous silver nitrate followed by concentrated aqueous ammonia allow addition of aqueous chlorine off-white ppt formed which dissolves in conc ammonia allow red/orange colour with aqueous chlorine observations tied to correct reagents

12 (a) rate = the gradient of the tangent at \mathbf{A}
(b) graph starts at 0,0 and rises more steeply than original graph levels off at about $1 / 2$ the volume of the original

BLANK PAGE

