MARK SCHEME for the October/November 2013 series

8780 PHYSICAL SCIENCE

8780/03

Paper 3 (Structured Questions), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Pa	age 2		Ma	rk Scheme	Syllabus	Paper
		GC	E AS LEVEL –	October/November 2013	8780	03
(a)	A: Sr (B: SrS C: Sr(I	O ₄				
			or one mark or two marks			
(b)) (i) <u>st</u> i	rong heatir	ng			
	(ii) Sr	$CO_3 \rightarrow S$	GrO + CO ₂			
(c)	(i) sir	mplest who	ole-number ratio	o of atoms of each element p	resent in the comp	ound
	(ii) pe	ercentage	Sr = (100 – 26.7	76) = 73.24%		
	73	Sr 3.24 37.6	O <u>26.76</u> 16.0			
	0.	836 1	1.673 2	SrO ₂		

(iii) H₂O₂

2

[Total: 8]

[1]

- (a) the velocity/motion is in the opposite direction to original velocity/velocity v_{A1} before collision
 - (b) $m_A v_{A1} (+m_B v_{B1}) = m_A v_{A2} + m_B v_{B2}$ in symbols, words or numbers [1] 0.123 (m s⁻¹) [1]

(c) use of conservation of kinetic energy and use of KE = $\frac{1}{2} mv^2$ [1] E_k before = 5.40×10^{-3} J and E_k after = 4.94×10^{-3} J (e.c.f from (b))[1]collision is inelastic as E_k before > E_k after (e.c.f)[1]**OR**(1)considers speed of approach = speed of separation and evidence of calculation(1)speed of approach = $0.3 (m s^{-1})$, speed of separation = $0.16 + 0.123 = 0.283 (m s^{-1})$ (1)(1)collision is inelastic as speed of approach > speed of separation(1)

- [Total: 6]
- 3 recognition that **both** K₂O and P₄O₁₀ **react** with water, (so cannot be present in solution) [1] idea that the KOH and H₃PO₄ formed by reaction with water will then neutralise each other [1] $K_2O + H_2O \rightarrow 2KOH$ $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$ [1]

H_3PO_4 + 3KOH \rightarrow K_3PO_4 +3 H_2		

[Total: 5]

[1]

	Page 3		6	Mark Scheme	Syllabus	Paper	
				GCE AS LEVEL – October/November 2013	8780	03	
4	(a)	 (a) the resultant force (in any direction) on the beam is zero the resultant moment on the beam/about any point is zero (accept the <u>sum</u> of the clockwise moments = the <u>sum</u> of the anticlockwise moment 					
	(b)	(i)	.,	vector diagram drawn with one side 3.9 cm in correct of triangle completed correctly <u>and</u> correct arrows force $H = 77.5 \pm 2.5$ (N)	direction	[1] [1] [1]	
						[Total: 5]	
5	(a)			o (or more waves meet at a point) the resultant displac idual displacements	ement is the sum	of the [1]	
	(b)	(i)		amplitude of the trace (on the c.r.o.) would go from ma s) (o.w.t.t.e)	ximum to minimu	m (several [1]	
		(ii)		axima and minima would be closer together (accept w creen are shorter)	avelengths on the	e [1]	
			2. ar	mplitude of the trace increases		[1]	
	(c)	the	trans	nt (destructive) interference (o.w.t.t.e) missions are not coherent or which would cause some eption (signal)	e places to have ([1] very) [1]	
						[Total: 6]	
6	(a)	(i)	cath	de = impure copper ode = pure copper trolyte = CuSO ₄ / Cu(NO ₃) ₂ not CuC <i>l</i> ₂ or just Cu ²⁺ (aq)	[1] [1] [1]	
		(ii)	anoo	de = Cu \rightarrow Cu ²⁺ + 2e ⁻ <u>and</u> cathode = Cu ²⁺ + 2e ⁻ \rightarrow	Cu	[1]	
		(iii)	anoo	de sludge/lime		[1]	
	(b)	wh∉ as∣	en wa [C <i>l⁻</i>] i	ICl is added the $[Cl^-]$ increases iter is added the $[Cl^-]$ decreases increases equilibrium moves right / as $[Cl^-]$ decreases a equilibrium / to reduce or increase $[Cl^-]$ (as appropria	•	[1] [1] es left [1] [1]	
		cor	ncentr	es should be given credit if they include the identification ation due to the additions of salt and water, the effects and a realistic Le Chatelier-based explanation	-		

[Total: 9]

	Page 4	Mark Scheme	Syllabus	Paper
		GCE AS LEVEL – October/November 2013	8780	03
7		se of $a = \Delta v / \Delta t$ or acceleration = gradient (= $16 \times 10^6 / 36 \times 10^{15} (\text{m s}^{-2})$	3.5 × 10 ⁻⁹)	[1] [1]
		se of $F = ma = 9.11 \times 10^{-31} \times 4.6 \times 10^{-15}$) (must use 9.11 2 × 10 ⁻¹⁵ (N) or 4.1 × 10 ⁻¹⁵ (N)	× 10 ⁻³¹ kg) e.c.f	from (i) [1] [1]
		er slope with electron emerging <u>earlier</u> igher final speed		[1] [1]
		$E = F/q = (5.0 \times 10^{-15} / 1.6 \times 10^{-19})$ $10^4 (NC^{-1})$		[1] [1]
				[Total: 8]
8	(a) (i) (2	-) methylpropan-1-ol or appropriate structural formula		[1]
	(ii) e	imination/dehydration		[1]
	(iii) h	/drogen bromide/HBr		[1]
		no(-2-)methylpropane transposition of substituents but <u>not</u> 2-bromo-		[1]
	(c) (i) (p	-)amine		[1]
	CI	urly arrow from lone pair of N to C joined to Br urly arrow from C–Br bond to Br atom prrect intermediate showing positive charge on N atom urly arrow showing deprotonation		[1] [1] [1] [1]

	Page 5		Mark Scheme	Syllabus	Paper
			GCE AS LEVEL – October/November 2013	8780	03
9	(a)	work	k done/energy transferred per unit charge		[1]
	(b)	150) (Ω)		[1]
	(c)	(i)	<u>use</u> of <i>V</i> = <i>IR</i> to show <i>I</i> = 6.0/400		[1]
	((ii)	zero (V) <u>and</u> correct reasoning using V = IR		[1]
	(i		resistance of thermistor = 600 (Ω) pd across thermistor = $\frac{3}{4} \times 6$ V = 4.5 V or evaluation of use of V = IR to find I (= 7.5 × 10 ⁻³ A compared with 1. or other		[1] [1] chhoff [1]
	(i	-	evidence of using Kirchhoff for loop CAD 1.5 (V)		[1] [1]
					[Total: 9]
10	(a)		$\Delta H = \Sigma (\text{bonds broken}) - \Sigma (\text{bonds formed}) \text{ or}$ cycle (4 × 390 + 160 × 2 × 150 + 4 × 460) – [994 + (8 × -814 (kJ mol ⁻¹) <i>minus sign required</i>	460)]	[1]
	((ii)	O is reduced oxidation number of O goes from –1 to –2 N is oxidised oxidation of N goes from –2 to zero		
			award two marks for four points award one mark for any two or three points		[2]
	(b)		equations added together $3N_2H_4 \rightarrow 4NH_3 + N_2$ $4NH_3 + N_2H_4 \rightarrow 3N_2 + 8H_2$ $4N_2H_4 (+ 4NH_3) \rightarrow 4N_2 (+ 4NH_3) + 8H_2$ cancelled NH ₃		
			divided by 4 to give $N_2H_4 \rightarrow N_2 + 2H_2$ only allow this mark if the reasoning is clear and unaml	biquous	[1]
	,		$nN_2H_4 = 400/32 = 12.5$	nguous	[4]
	($n(gas) = 3 \times 12.5 = 37.5$		[1] [1]
			$P = \frac{37.5 \times 8.31 \times 950}{0.025}$		[1]
			P = 11842 (kPa)		[1]
					[Total: 9]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – October/November 2013	8780	03

11 (a) any four from: α -particles at gold foil thin (gold foil) detector moved to different angles / vacuum / foil most un-deviated / little deviation a few scattered through large angles / > 90°

- (b) (i) like charges repel, so large deflections show nucleus must have same charge as alpha (o.w.t.t.e)
 or argument based on conservation of momentum for large deflections
 or large angle deflection means mass/positive charge is not distributed throughout
 - (ii) <u>most</u> α-particles were un-deviated / <u>very</u> few scattered through large angles, (hence cross-section of nucleus is very small) [1]

[Total: 6]

[4]