MARK SCHEME for the October/November 2013 series

8780 PHYSICAL SCIENCE

8780/03
Paper 3 (Structured Questions), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2013	$\mathbf{8 7 8 0}$	03

1 (a) $\mathrm{A}: \mathrm{Sr}(\mathrm{OH})_{2}$
B: SrSO_{4}
C: $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$
any two correct for one mark
all three correct for two marks
(b) (i) strong heating
(ii) $\mathrm{SrCO}_{3} \rightarrow \mathrm{SrO}+\mathrm{CO}_{2}$
(c) (i) simplest whole-number ratio of atoms of each element present in the compound
(ii) percentage $\mathrm{Sr}=(100-26.76)=73.24 \%$

Sr	O
$\frac{73.24}{87.6}$	
	$\frac{26.76}{16.0}$

0.836
1.673
1
2
SrO_{2}
(iii) $\mathrm{H}_{2} \mathrm{O}_{2}$

2 (a) the velocity/motion is in the opposite direction to original velocity/velocity $v_{\mathrm{A} 1}$ before collision
(b) $m_{A} V_{A 1}\left(+m_{B} V_{B 1}\right)=m_{A} V_{A 2}+m_{B} V_{B 2}$ in symbols, words or numbers
$0.123\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
(c) use of conservation of kinetic energy and use of $\mathrm{KE}=1 / 2 m v^{2}$
E_{k} before $=5.40 \times 10^{-3} \mathrm{~J}$ and E_{k} after $=4.94 \times 10^{-3} \mathrm{~J}($ e.c.f from (b))
collision is inelastic as E_{k} before $>E_{\mathrm{k}}$ after (e.c.f)

OR

considers speed of approach = speed of separation and evidence of calculation
speed of approach $=0.3\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$, speed of separation $=0.16+0.123=0.283\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
collision is inelastic as speed of approach > speed of separation
[Total: 6]

3 recognition that both $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{P}_{4} \mathrm{O}_{10}$ react with water, (so cannot be present in solution) idea that the KOH and $\mathrm{H}_{3} \mathrm{PO}_{4}$ formed by reaction with water will then neutralise each other
$\mathrm{K}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}$
$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$
$\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{KOH} \rightarrow \mathrm{K}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2}$

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2013	$\mathbf{8 7 8 0}$	03

4 (a) the resultant force (in any direction) on the beam is zero
the resultant moment on the beam/about any point is zero
(accept the sum of the clockwise moments = the sum of the anticlockwise moments)
(b) (i) (ii) vector diagram drawn with one side 3.9 cm in correct direction triangle completed correctly and correct arrows
force $H=77.5 \pm 2.5$ (N)
[Total: 5]

5 (a) when two (or more waves meet at a point) the resultant displacement is the sum of the two individual displacements
(b) (i) the amplitude of the trace (on the c.r.o.) would go from maximum to minimum (several times) (o.w.t.t.e)
(ii) 1. maxima and minima would be closer together (accept wavelengths on the screen are shorter)
2. amplitude of the trace increases
(c) to prevent (destructive) interference (o.w.t.t.e)
the transmissions are not coherent or which would cause some places to have (very) poor reception (signal)
[Total: 6]

6 (a) (i) anode = impure copper
cathode = pure copper
electrolyte $=\mathrm{CuSO}_{4} / \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ not CuCl_{2} or just $\mathrm{Cu}^{2+}(\mathrm{aq})$
(ii) anode $=\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$and cathode $=\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$
(iii) anode sludge/lime
(b) when NaCl is added the $\left[\mathrm{Cl}^{-}\right]$increases
when water is added the [Cl^{-}] decreases
as $\left[\mathrm{C} l^{-}\right]$increases equilibrium moves right / as $\left[\mathrm{Cl} l^{-}\right]$decreases equilibrium moves left to restore equilibrium / to reduce or increase $\left[\mathrm{C} l^{-}\right]$(as appropriate)
responses should be given credit if they include the identification of changes to chloride ion concentration due to the additions of salt and water, the effects this has on the equilibrium position and a realistic Le Chatelier-based explanation
[Total: 9]

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2013	$\mathbf{8 7 8 0}$	03

7 (a) (i) use of $a=\Delta v / \Delta t$ or acceleration $=$ gradient $\left(=16 \times 10^{6} / 3.5 \times 10^{-9}\right)$
$4.6 \times 10^{15}\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
(ii) use of $F=m a=9.11 \times 10^{-31} \times 4.6 \times 10^{-15}$) (must use $9.11 \times 10^{-31} \mathrm{~kg}$) e.c.f from (i) $4.2 \times 10^{-15}(\mathrm{~N})$ or $4.1 \times 10^{-15}(\mathrm{~N})$
(b) steeper slope with electron emerging earlier with higher final speed
(c) use of $E=F / q=\left(5.0 \times 10^{-15} / 1.6 \times 10^{-19}\right)$
$3.1 \times 10^{4}\left(\mathrm{NC}^{-1}\right)$

8 (a) (i) (2-) methylpropan-1-ol or appropriate structural formula
(ii) elimination/dehydration
(iii) hydrogen bromide/ HBr
(b) 1-bromo(-2-)methylpropane
allow transposition of substituents but not 2-bromo-
(c) (i) (p-)amine
(ii) curly arrow from lone pair of N to C joined to Br curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br atom
correct intermediate showing positive charge on N atom
curly arrow showing deprotonation

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2013	8780	03

9 (a) work done/energy transferred per unit charge
(b) $150(\Omega)$
(c) (i) use of $V=I R$ to show $I=6.0 / 400$
(ii) zero (V) and correct reasoning using $V=I R$
(iii) resistance of thermistor $=600(\Omega)$
pd across thermistor $=3 / 4 \times 6 \mathrm{~V}=4.5 \mathrm{~V}$ or evaluation of total resistance
use of $V=I R$ to find $I\left(=7.5 \times 10^{-3} \mathrm{~A}\right.$ compared with $\left.1.5 \times 10^{-2} \mathrm{~A}\right)$ or by Kirchhoff or other
(iv) evidence of using Kirchhoff for loop CAD
1.5 (V)

10 (a) (i) $\Delta H=\Sigma$ (bonds broken) $-\Sigma$ (bonds formed) or cycle $(4 \times 390+160 \times 2 \times 150+4 \times 460)-[994+(8 \times 460)]$ $-814\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ minus sign required
(ii) O is reduced
oxidation number of O goes from -1 to -2
N is oxidised
oxidation of N goes from -2 to zero
award two marks for four points
award one mark for any two or three points
(b) (i) equations added together
$3 \mathrm{~N}_{2} \mathrm{H}_{4} \rightarrow 4 \mathrm{NH}_{3}+\mathrm{N}_{2}$
$4 \mathrm{NH}_{3}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow 3 \mathrm{~N}_{2}+8 \mathrm{H}_{2}$
$4 \mathrm{~N}_{2} \mathrm{H}_{4}\left(+4 \mathrm{NH}_{3}\right) \rightarrow 4 \mathrm{~N}_{2}\left(+4 \mathrm{NH}_{3}\right)+8 \mathrm{H}_{2}$
cancelled NH_{3}
divided by 4 to give $\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2}$
only allow this mark if the reasoning is clear and unambiguous
(ii) $\mathrm{nN}_{2} \mathrm{H}_{4}=400 / 32=12.5$
n (gas) $=3 \times 12.5=37.5$
$\mathrm{P}=\frac{37.5 \times 8.31 \times 950}{0.025}$
$P=11842(\mathrm{kPa})$

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2013	$\mathbf{8 7 8 0}$	03

11 (a) any four from:
α-particles at gold foil
thin (gold foil)
detector moved to different angles / vacuum / foil most un-deviated / little deviation
a few scattered through large angles $/>90^{\circ}$
(b) (i) like charges repel, so large deflections show nucleus must have same charge as alpha (o.w.t.t.e)
or argument based on conservation of momentum for large deflections
or large angle deflection means mass/positive charge is not distributed throughout
(ii) most α-particles were un-deviated / very few scattered through large angles, (hence cross-section of nucleus is very small) [1]
[Total: 6]

