MARK SCHEME for the October/November 2012 series

8780 PHYSICAL SCIENCE

8780/03

Paper 3 (AS Structured Questions), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Pa	ge 2		Mark Scheme Syllabus							
				GCE AS LEVEL – October/November 2012	8780	03					
1	(a)	Mole	cule	cules/particles of gas collide with the <u>walls</u> of the cylinder							
		leads to change in momentum (of particle) rate of change of momentum = force Many collisions leads to force over the whole wall / the collisions cause a force									
		(hen	ce pi	ressure) on the walls.		(1)	[3]				
	(b)	(Distance between collisions is reduced therefore) more collision per unit time/ more frequent collisions (Any mention of increased speed of molecules 0/1)									
2	(a)	(i) ງ	<i>y</i> -axi x-axi	s = number/proportion/percentage of molecules (with a s = energy/ <i>KE</i> (NOT speed)	given energy)	(1)					
		(ii) p t	prop to rea	ortion/percentage/number of molecules with $E \ge E_A$ /eract	nough energy	(1)					
	((iii) 2	Line asyn	starts at origin; mode lower and shifted to the right; doen uptotic to the <i>x</i> -axis	es not touch/is	(1)					
	(b)	(large incre	e) in ase	crease in shaded area/number of molecules with $E \ge E$ in temperature)	Ξ_a (for a small	(1)	[1]				
3	(a)	take readi	man ings	y readings <u>and</u> average either at right angles or along the length of the wire/igno	re anomalous	(1) (1)	[2]				
	(b)	perce unce	entag ertain	ge uncertainty in $d = (0.01/0.14) \times 100 = 7.1 \%$ (acc ty throughout)	cept fractional	(1)					
		(perc abso (acce	Jenta olute ept 7	uncertainty in $A = (0.015 \times 14.2)/100 = 2(.1)$ mm % etc.)		(1)	[2]				
4	(a)	21.7	× 10	$1^{-3} \times 0.150 = 3.255 \times 10^{-3} $ (mol)		(1)					
	(b)	(i) 	Mole Mole	s of H ₂ X in 25.0 cm ³ = $(3.255 \times 10^{-3})/2 = 1.63 \times 10^{-3}$ (most s of H ₂ X in 250 cm ³ = 1.63 × 10 ⁻² (mol)	ol)	(1) (1)					
	(c)	<i>M</i> r of	ΓH₂X	∑ = 1.92 / 1.63 × 10 ⁻² = 117.9 = 118		(1)	[4]				
5	(a)	(i) \	V = 1	.3 × 2.5 = 3.25 V (accept 3.1 to 3.5)		(1)					

	Page 3							M	ark S	Schei	me					S	yllab	us	Раре	er
					GC	EAS	LEV	EL	– Oc	tobe	r/No	ve	mber	2012	2		8780	0	03	
	(b)	(i)	Amp	olitu	de do	ouble	d, frec	quer	ncy ı	incha	nge	d							(1)	
		(ii)	zero men men	zero amplitude mention of addition or subtraction (accept cancel for (ii)) or correct mention of constructive/destructive interference of signals in (i) or (ii) [to									(1)							
			scor is cle	re tl ear	nis ma the a	ark a mplit	t leas ude ir	t on hcre	e of asec	the n I in (i)	nark) / de	s ir ecre	n (i) o easeo	or (ii) d in (i	must i)]	be s	score	d or it	(1)	[3]
6	(a)	(i)	Q = = 52	(<i>m</i> i 225	c⊿T)÷ J <i>all</i> o	= 100 ow 5) × <u>4.1</u> 225 k.	<u>8</u> × J if l	<u>12.5</u> units	5 chan	ged	by	cano	lidate	,				(1) (1)	[2]
		(ii)	nCH	l₃Cl	H₂CH	₂OH	= 0.34	1/6	60 = 5	5.68 ×	< 10 ⁻	⁻³ (r	nol)						(1)	[1]
		(iii)	enth	nalp	y cha	nge	of con	าbนะ	stion	= -9	19 k.	J m	ol ⁻¹ p	penal	ise '+'	' or n	nissin	ng '—'	(1)	[1]
	(b)	(i)	sour allov	rce w in	of err comp	or = ete	heat lo combi	oss ustia	to su on/na	ırrour on-us	ndiną e of	gs/l hea	oss o at caµ	of pro b <i>acit</i> y	pan-1- / of ap	-ol b opara	y eva atus	aporatior	ר (1)	
		(ii)	Con	ivin	cingly	expl	ains v	vhy	ΔH c	or hea	at er	nerg	gy val	lue/ q	would	d be	(muc	h) too lo	w (1)	[2]
7	(a)	A <i>l</i> ₂ \$	Se ₃	+	6H ₂ 0	C	\rightarrow	2	2 A <i>1</i> (C	OH)₃	+	3⊦	l₂Se						(1)	[1]

(b) (i) $H_2Se =$ 'bent' shape with 2 lone pairs – based on tetrahedral

(1)

(ii) NH₃ = pyramidal shape with 1 lone pair

(1)

NOT dot-and-cross diagrams but allow [1] if **both** diagrams show the correct numbers of lone pairs If lone pairs are missing from both diagrams, allow [1] if **both** shapes are correct.

	Pa	Page 4		Mark Scheme GCE AS LEVEL – October/November 2012	Syllabus 8780	Paper 03					
		(iii)	Se h pairs Lone repu	as 2 lone pairs but N has only 1 lone pair /allow Se has than N e pairs repel more strongly than bonding pairs / etc. refe lsion of atoms negates	more lone rence to	(1) (1)	[4]				
8	(a)	 (a) Isotopes are different forms of the same element with the same number of protons but different numbers of neutrons (accept proton/atomic number, neutron number) ¹⁴/₇N+ ¹/₀n → ¹⁴/₆C+ ¹/₁p all symbols correct (accept H) 									
	(b)	all r (sp	numb ecial (ers correct case: accept ${}^{15}_{7}N \rightarrow {}^{14}_{6}C + {}^{1}_{1}p$ for 1mark)		(1) (1)	[2]				
	(c)	cor cor (ac	rect p rect p cept b	osition mother nuclide correctly labelled osition daughter nuclide correctly labelled both correctly positioned and clear indication for 1 max)		(1) (1)	[2]				
9	(a)	Cro and am Do	oss (X I stud ount/c NOT	(X) is positioned where 1 goes flat i.e. where 4 joins 1 student explains that after X , NH ₃ formed/destroyed at same rate/ $R_f = R_b$ or nt/concentration of NH ₃ constant at equilibrium. OT allow line goes flat/ NH ₃ not formed any more							
	(b)	(i)	incre	eased pressure = 3 increased temperature = 2		(1)					
		(ii)	expla fewe right	ain that pressure favours side with fewer moles (depender moles on right / there is a 2:1 mole ratio L:R/equilibrium /more NH_3 formed	lent on b(i)) m moves	(1) (1)					
		(iii)	cata incre	lyst increases rate and does not change equilibrium pos ease equally	ition/rates	(1)	[4]				
10	(a)	(i)	p = (= 7.5	0.142×53.0 53 kg m s ⁻¹ (N s or kgms ⁻¹)		(1) (1)	[2]				
		(ii)	F = 2	$\Delta p / \Delta t = 7.53 / 0.451 = 167 N$		(1)	[1]				
	(b)	E _k =	= ½ n	$nv^2 = \frac{1}{2} \text{ xo.} 142 \times 53^2 = 199 \text{ J}$		(1)	[1]				
	(c)	(i)	clea as <u>w</u>	r mention of friction /drag/resistance <u>ork is done</u> against frictional force		(1) (1)	[2]				
		(ii)	kine surro	tic energy is converted to internal (heat/thermal) energy oundings	of the ball and/or	r (1)	[1]				

	Page 5			l l	Nark Scheme	Syllabus	Paper	,
				GCE AS LEVEL – October/November 2012 8780				
11	(a)	(i)	Para	allel vertical lines arro	ws downwards (minimum 2)		(1)	[1]
		(ii)	<i>E</i> = = 80	<i>V/d</i> = 400/ 5 (× 10 ⁻²) 000 V m ⁻¹ or N C ⁻¹ acc	ept 80 V cm ^{-1} or N C ^{-1}		(1) (1)	[2]
	(b)	Cle	ar pa	rabolic shape towards	s the positive plate		(1)	[1]
	(c)	(i)	Incre	eases (uniformly)			(1)	
		(ii)	uncł	nanged			(1)	[2]
12	(a)	(i)	2-br	omo-3-methylbutane	allow variants such as 3-bromo-2	-methylbutane	(1)	
		(ii)	elim	ination			(1)	
		(iii)	sodi	um/potassium hydrox	ide and dissolved in alcohol		(1)	
		(iv)			н н			
							(1)	
		(v)	No, attao	as the right hand C in ched to it.	the C=C bond has two CH ₃ /the sa	ime groups	(1)	[5]
	(b)							
				$CH_{3} \xrightarrow{C} C \xrightarrow{C} CH(CH_{3})$	H 2 CH ₃ —C—CH(CH ₃) ₂ CN (Br [−])			
		bot cor	h arro rect s	ows correctly position tructure for nitrile	ed		(1) (1)	[2]

- 13 (a) Quantity with magnitude and direction
 - (b) (i) Arrow vertically down and arrow along the string, all 3 arrows go through a single point (by eye) (1) [1]
 - (ii) $0.510 \times 9.81 = 5.0(0) N$ (1) [1]
 - (iii) triangle with correct directions (45,90,45), with at least one force labelled (1) arrows correct (1) $T = 35 \pm 1 \text{ N}$ (1) [3]

(1) [1]

	Page 6	Mark Scheme	Syllabus	Paper							
		GCE AS LEVEL – October/November 2012	8780	03							
(c)	Evidence o correc	of acceleration = 4.7 m s ⁻¹ ct line on graph		(1) (1)	[2]						
14	(a) Any tw brown relight residu	 a) Any two from: brown = NO₂ relights spill = O₂ residue is Group II/metal oxide 									
	IOMIS	(soluble) Group Inmetal hydroxide in water		(1)	[2]						
	(b) (i) Ba	arium/Group I/Group II nitrate accept strontium nitrate/	lithium nitrate	(1)							
	(ii) 28	$Ba(NO_3)_2 \rightarrow 2BaO + 4NO_2 + O_2$ allow ecf on error in nit	rate	(1)	[2]						
15	(a) dissolv	a) dissolved in molten cryolite/cryolite lowers melting point of mixture									
	Al^{3+} +		(1)								
	it is ex	(pensive (to extract) due to the cost of the large amount	of electricity/energy	gy (1)	Г И 1						
	neede	a/nigh current used		(1)	[4]						
	(b) Any or conse save e reduce reduce	ne advantage from: rves resources energy es mining/landfill es pollution – developed									
	reduce	es need for transport - developed		(1)	[1]						