MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

8780 PHYSICAL SCIENCE

8780/03

Paper 3, maximum raw mark 80

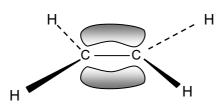
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

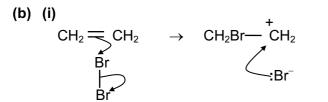
Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE AS LEVEL – October/November 2011	8780	03
1	(a) 8.0 – 9.5	5 (°C) ;		[1]
	(b) reversed non-line	d scale ar, high numbers closer, at least 4 and scale easy to use		[1] [1]
				[Total: 3]
2	(a) +3/3/III	allow 3+		[1]
		$O_2 \text{ produced} = \frac{15}{(15 \times 8.31 \times 208)}$		[1]
	V = nRT	$T/p = \frac{(15 \times 8.31 \times 298)}{100 \times 10^3}$ correct conversion and substitution	ution	[1]
	0.37(1) r			[1]
				[Total: 4]
3		200 N, $F = 17200$ N se $g = 9.81$ or 9.8 Nkg ⁻¹)		[1]
	(b) (i) <u>use</u>	of force/area \rightarrow 17 200/(2.4 × 1.0)		[1]
	720	0Pa (accept ecf)		[1]
	(ii) <u>use</u>	$\underline{\text{of}} p = \rho g \Delta h$		[1]
	Δh =	= 7200/(1080 × 100) $\rightarrow \Delta h$ = 0.67 m (accept ecf)		[1]
	(c) mas	as of water displaced = 0.68 × 1.0 × 2.4 × 1080 = 1760 kg	3	[1]
				[Total: 6]


Page 3			Mark Scheme: Teachers' version		
			GCE AS LEVEL – October/November 2011	8780	03
4	(a)	(i)	BF_3 drawn as trigonal planar BF_4^- drawn as	tetrahedral (-)	
					[2]
			allow [1] if two fully-correct dot-and-cross diagrams given structures	in place of both	
			BF_3 named as trigonal planar		[1]
			BF_4^- angle = 109(1/2)°		[1]
		(ii)	equal repulsion between 3 bonding pairs		[1]
	(b)	(i)	dative/coordinate		[1]
		(ii)	lone pair donated from F^- to B allow to BF	3	[1]
					[Total: 7]
5	(a)	(i)	1 mm – 1 m		[1]
		(ii)	icrowaves wave r to mountain	[1] length much [1]	
	(b)	(i)		[1] [1]	
		(ii)	path difference for contributions from slits = $[n + \frac{1}{2}]$ waveles so waves out of phase (and subtract/cancel) / destructive i	•	[1] [1]
		(iii)	amplitude = maximum amplitude $\div \sqrt{2}$		[1]
		(iv)	 maxima and minima/fringes move further apart maxima and minima/fringes move closer 		[1] [1]
					[Total: 10]


Page 4			Mark Scheme: Teachers' version	Syllabus	Paper			
			GCE AS LEVEL – October/November 2011	8780	03			
6	(a) CH₄	ı + ŀ	+ $H_2O \rightarrow CO + 3H_2$					
	(b) (i)		quotes/refers to data showing decreased yield as temp. increases high temp. favours endothermic direction so forwards = exothermic					
	(ii)		fewer molecules/moles on right, high pressure favours direction producing fewer molecules (higher yield)					
	(iii)	pre allo	pressure is compromise between rate/yield and cost of maintaining high pressure allow: pressure used is the maximum economic pressure / is the highest economically viable pressure					
	(c) (i)	Wa	N_2 and H_2 have only (weak) induced dipole-induced dipole/van der Waal forces of attraction, (strong) hydrogen bonding present between NH_3 molecules					
	h vi		hydrogen bonding much stronger than induced dipole-induced dipole/ van der Waal forces (so more energy/higher temperature needed to separate molecules)					
	(ii)	allo	<u>oling</u> the mixture allows ammonia to be removed as a <u>lic</u> ow a specific statement to the effect that ammonia is rer ndensation		[1]			
	(d)		$H_{f} = [(-414.5) + 2(-81.0)] - [(-287.0) + (-320.5)]$ 31 kJ mol^{-1}		[1] [1]			
7	(b) (i) att → (ii) KE co		nydrogen nucleus has less charge / smaller (not less mass) / lower speed					
			attempted use of momentum equation \rightarrow 5 × 0.4 = 3 × 0.4 + 8m \rightarrow 2 × 0.4 = 8m _B \rightarrow m = 0.10 kg					
			KE before = $\frac{1}{2} \times 0.4 \times 5^2$ =5.0 J OR KE after = $\frac{1}{2} \times 0.4 \times 5^2 + \frac{1}{2} \times 0.1 \times 8^2$ correct calculation for both (= 5 J) statement that <u>kinetic</u> energy before = <u>kinetic</u> energy after					
					[1] [Total: 6]			

[[]Total: 6]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS LEVEL – October/November 2011	8780	03

- 8 (a) (i) σ bonding involves end-on overlap of orbitals / clear diagram [1]
 π bonding involves sideways overlap (of 'p' orbitals) / clear diagram [1]
 - (ii) diagram of ethene showing planar shape and π bond clearly drawn, e.g. [1]

3 curly arrows correctly positioned [1] correct intermediate bromocarbocation [1] 1,2-dibromoethane [1] (ii) induced dipole on Br₂, caused by high electron density on C=C bond [1] (c) (i) correct structure for 2-bromopropane – displayed formula expected but [1] allow below as minimum detail: $CH_3 - CH - CH_3$ Br (ii) alcohol [1] (iii) H^+ and $K_2Cr_2O_7$ and heat [1] (iv) propanone [1]

[Total: 11]

	Page 6			Mark Scheme: Teachers' version	Syllabus	Paper		
				GCE AS LEVEL – October/November 2011	8780	03		
9	(a)		positive background dough electrons embedded					
	(b)		mark (i) and (ii) as one entity α-particle fired at gold foil					
	(c)	 three points, including at least one observation and one linked conclusion, from: foil very thin/leaf most go straight through* * leads to mostly empty space (very) small percentage deflected through large angles** ** leads to very small/massive nucleus (i) two from: electrons in allowed orbits (accept orbitals/shells) 						
				s 'radiationless' I numbers in each orbit		[max 2]		
		(ii)	-	p numbers = number of outer shell electrons od = number of shells		[1] [1]		
						[Total: 10]		
10	(a)	(i)	2I ₂ -	$-8I_3 - 0 \times I_1 = 0 \rightarrow I_3 = 4I_2$		[1]		
		(ii)	<i>I</i> ₂ =	1.6 A, <i>I</i> ₃ = 0.4 A		[1]		
	(b)	(1 –	· I ₁ –	$I_2 = 0 \rightarrow 1 - I_1 - 1.6 = 0 \rightarrow =) - 0.6 \text{ A}$ (or could be done	at point G)	[1]		
	(c)	<u>use of</u> Kirchhoff's 2^{nd} law around suitable loop E = 13.2 V				[1] [1]		
						[Total: 5]		

	Page 7			Mark Scheme: Teachers' version Sy					Syllabus	Paper
				GCE A	S LEVEL	_ – October/	November 20	11	8780	03
11	(a)	(i)	simp	lest ratio of	atoms of	each eleme	nt in a compo	und/molecul	Э	[1]
		(ii)	<u>Na</u>	<u>CI</u>	<u>0</u>					
			<u>21.6</u> 23	<u>33.3</u> 35.5	<u>45.1</u> 16					[1]
			0.93	9 0.938	2.82					
				: 1 aC <i>1</i> O ₃	: 3					[1]
	(b)	(i)	mole).571/2 =	2.85×10^{-3}	′1 × 10 ^{−3} (mol) (mol))		[1] [1] [1]
		(ii)) = [138 – 60 so Q= K/p						[1] [1]

[Total: 8]