MARK SCHEME for the October/November 2012 series

9231 FURTHER MATHEMATICS

9231/23

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9231	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9231	23

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √*" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9231	23

Question Number	Mark Scheme I	Details			Part Mark	Total
1	Find radial acce	eleration when $t = 3$:	$(k-3^2)^2/1.5$ [m s ⁻²]	B1		
	Find transverse	accel. (ignoring sign) when $t = 2$	3: $2t = 6$ [m s ⁻²]	B1		
	Equate magnitu	ides to find <i>k</i> :	$(k-9)^2 = 9, \ k = 6 \text{ or } 12$	2 M1 A1	4	[4]
2	Use conservation	on of energy:	$\frac{1}{2}mv^2 = \frac{1}{2}mkga - mga(1 - \cos\theta)$	B1		
	Use $F = ma$ rad	lially:	$R+4mg-mg\cos\theta = mv^2/a$	M1 A1		
	Eliminate v to t	find <i>R</i> :	$R = mg(3\cos\theta + k - 6)$ A.G.	M1 A1	5	
	Find <i>k</i> from $v \ge$	t 0 ($or > 0$) when $\theta = \pi$:	$k \ge 4 (or k > 4)$	M1 A1	2	[7]
3 (i)	Find R_C by mor	ments for <i>BC</i> about <i>B</i> :	$R_C 2a \sin \beta = mg a \cos \beta$			
			$R_C = \frac{1}{2} mg \cot \beta$ A.G.	M1 A1	2	
(ii)	EITHER:	Moments for system about A:	$R_C (2a\sin\alpha + 2a\sin\beta)$			
			$= mg (3a \cos \alpha + a \cos \beta)$	M1 A1		
		Substitute for R_C from (i):	$\frac{1}{2}\cos\beta(2\sin\alpha+2\sin\beta)$			
			$= \sin\beta (3\cos\alpha + \cos\beta)$	M1 A1		
			$\tan \alpha = 3 \tan \beta$ A.G.	A1		
	OR:	Moments for <i>AB</i> about <i>B</i> :	$R_A 2a \cos \alpha = F_A 2a \sin \alpha$			
			+ $mg a \cos \alpha$	(M1 A1)		
		Substitute $R_A = 2mg$, $F_A = R_C$:	$4\cos\alpha = (\frac{1}{2} \cot\beta)\sin\alpha + \cos\alpha$	(M1 A1)		
			$\tan \alpha = 3 \tan \beta$ A.G.	(A1)	5	
(iii)	Find μ_{min} using	$F_A \leq \mu R_A$:	$\mu_{min} = \frac{1}{4} \cot \beta = \frac{3}{4} \cot \alpha = \frac{1}{4}\sqrt{3}$	M1 A1	2	[9]

F	F	Page 5	Mark Schen		Syllabus		Paper	
			GCE A LEVEL – October/	November 2012	9231		23	
Quest Numb		Mark Scher	ne Details				Part Mark	Total
4 (i))	Use cons. o	f momentum for 1 st collision:	$mu_A + 2mu_B = 2mu$		B1		
		Use Newton	n's law of restitution:	$u_A - u_B = -e 2u$		B1		
		Eliminate <i>u</i>	$_A$ to find u_B :	$u_B = 2u(1+e)/3$ A.C	G. MI	A1	4	
(ii))	Use cons. o	f momentum for 2 nd collision:	$2mv_B + mv_C = 2mu_B -$	- <i>mu</i>	M1		
		Use Newton	n's law of restitution:	$v_B - v_C = -e (u_B + i)$	u)	M1		
		Substitute a	nd solve for v_B :	$v_B = u(1+e)(1-2e)/2$	9 (A.E.F.)	A1	3	
(iii	i)	Find u_A :		$u_A = \frac{2}{3}u(1-2e)$		B1		
		State or imp	bly dirns. in which A, B move:	$e > \frac{1}{2}$ so A/B change of	direction			
			(needs u_A , v_B correct)	in 1 st /2 nd collision	(A.E.F.)	B1		
		Show $ u_A >$	$ v_B $: (needs u_A , v_B correct):	$ u_A / v_B = \frac{2}{3} / (1 + e) /$	/9			
				= 6/(1+e) > 1	1 (A.E.F.) M1	A1	4	[11]
5		State or find	MI of rod <i>AB</i> (or <i>AD</i>) about <i>A</i> :	$I_{AB} = \frac{1}{3}ma^2 + ma^2 = (4, 1)$	$/3)ma^2$	B1		
		State or find	d MI of rod <i>BC</i> (or <i>CD</i>) about <i>A</i> :	$I_{BC} = \frac{1}{3}ma^2 + m5a^2$ [=($(16/3)ma^2$]	M1		
		Find MI of	frame about A:	$I = 2(I_{AB} + I_{BC}) = 40ma$	² /3 A.G. M1	A1	4	
		Use energy	to find ang. vel. ω at angle θ :	$\frac{1}{2}I\omega^2 = \frac{1}{2}I(6g/5a)$				
		(lose A1	for one incorrect term)	$-4mg a\sqrt{2} (1 -$	$-\cos\theta$ M1	A2		
		Substitute f	or <i>I</i> and simplify (A.E.F.):	$\omega = \sqrt{\{(3g/5a)(2 - \sqrt{2}($	$1 - \cos \theta$))} M1	A1	5	
		Equate AC	ω to $k\sqrt{(ga)}$ to find k when $\theta = 90^\circ$:	$k\sqrt{(ga)} = 2\sqrt{2a}\sqrt{((3g/5))}$	$5a)(2-\sqrt{2})$ M1	A1		
				$k = 2\sqrt{\{6(2-\sqrt{2})/5\}} =$	- 1.68	A1	3	[12]
6 (i)	,	State or find	l by integration $F(x)$:	$F(x) = 1 - e^{-x/6} \ (x \ge 0),$	0 otherwise M1	A1	2	
(ii))	State or find	l mean μ :	$\mu = 1/(1/6) = 6$		B1		
		Find $\pm P(m \pm m)$	$\leq X \leq \mu$) [<i>m</i> = 4.16 not reqd]:	$F(\mu) - \frac{1}{2} = 1 - e^{-1} - \frac{1}{2}$	Ml	A1		
				Reqd. prob. = 0.132		A1	4	[6]

	Page 6	Mark Scher		Syllabus	Paper	
		GCE A LEVEL – October	November 2012	9231	23	
Question Number	Mark Scher	ne Details			Part Mark	Total
7 (i)	State suitab	le assumption (A.E.F.):	Population is Normal	Ι	31	
	Find confid	ence interval:	$1110.8/10 \pm t \sqrt{333.9}$	(90) M1 A	A1	
			$= 111 \cdot 1 \pm t \sqrt{3} \cdot 71$	I	A1	
	State or use	correct tabular value of <i>t</i> :	$t_{9,0.995} = 3.25$	I	A1	
	Evaluate C.	I.:	$111 \pm 6 \ or \ [105, 117]$] /	A1 6	
(ii)	Compare t,	est. variance <i>s</i> and <i>n</i> :	t and s smaller, n large	r N	11	
	Deduce effe	ect on width of C.I. (A.E.F.):	Width is less than in (i) A	A1 2	[8]
	S.R. B1 if	valid apart from considering <i>n</i>				
8	Find value	of p for binomial dist.:	mean = $150/50 = 3$, p	= ³ / ₄ M1 A	1	
	Find expect	ed binomial values (to 2 d.p.):	0.20 2.34 10.55 21.09	9 15·82 M1 A	A1	
	Combine ac	ljacent cells since exp. value < 5:	<i>O</i> : 14 17	19		
			<i>E</i> : 13.09 21.09	9 15·82 *N	11	
	Calculate v	alue of χ^2 (to 2 d.p.; A1 dep *M1)): $\chi^2 = 1.50$	M1 *A	A1	
	State or use	consistent tabular value (to 2 d.p.):	$\chi_{1,0.9}^2 = 2.706$ (cells	combined) *I	31	
			$[\chi_{2,0.9}^2 = 4.605, \chi_{3,0.9}$	$e^2 = 6.251$]		
	Correct con	clusion (A.E.F., dep *A1, *B1):	1.50 < 2.71 so distn. do	bes fit A	A1 9	[9]

	Page 7			Syllabus		Paper	
		GCE A LEVEL – October	/November 2012	9231		23	
Question Number	Mark Schei	me Details				Part Mark	Total
)	State hypot	heses:	$\mathbf{H}_0: \mu_P = \mu_Q, \ \mathbf{H}_1: \mu_P \neq \mu_Q$	lQ	B1		
	Estimate po	opulation variance using P's sample	e: $s_P^2 = (2120 - 321 \cdot 2^2 / 5)$	50) / 49			
	(allow us	se of biased: $\sigma_{P,50}^{2} = 1.132 \text{ or } 1.0$	(64^2) [= 1.155 or 1.07]	5 ²]	M1		
	Estimate po	opulation variance using Q 's sampl	e: $s_Q^2 = (3310 - 475 \cdot 3^2)^2$	70) / 69			
	(allow us	se of biased: $\sigma_{Q,70}^2 = 1.182 \text{ or } 1.182$	(1000000000000000000000000000000000000	5 ²]	M1		
	Estimate po	opulation variance for combined sa	mple: $s^2 = {s_P}^2 / 50 + s_P^2$	$s_Q^2 / 70$			
			= 0.04023	or 0.2006^{2}			
	(allow us	se of $\sigma_{P,50}^{2}$, $\sigma_{Q,70}^{2}$)	(or 0.03949 or 0.198	87 ²)	M1 A1		
	Calculate v	alue of z (to 2 d.p., either sign):	z = (6.424 - 6.79) / s		M1 A1		
			= -0.366/0.2006 = -1	1.82[5]			
			(<i>or</i> –1	l·84)	A1		
	S.R. Allow	(implicit) assumption of equal var	riances,				
	but	deduct A1 if not explicit:					
	Find	pooled estimate of common varian	here s^2 : $(50\sigma_{P,50}^2 + 70\sigma_{Q,7})$	₀ ²)/118			
			$= 1.180 \ or \ 1.086^2$	(M1A1)		
	Calc	vulate value of z (to 2 d.p.):	$z = (6.424 - 6.79)/s\sqrt{(}$	1/50+1/70) (1	M1 A1)		
			= -1.82		(A1)		
	State or use	e correct tabular z value:	$z_{0.95} = 1.645$ (to 2 d.)	p.)	B1		
	Conclusion	consistent with values (A.E.F):	Breaking strengths not	the same	A1√	10	[10]

Page 8			Syllabus	Paper		
	GCE A LEVEL – Octobe	er/November 2012	9231	23		
Mark Schei	ne Details			Part Mark	Total	
Calculate g	radient <i>b</i> in $y - \overline{y} = b(x - \overline{x})$:					
	b = (47136 -	610 × 578/8) / (49682 – 61	$0^{2}/8)$			
		= 3063.5 / 3169.5 =	0·966[6] B	1		
Find regres	sion line of y on x (A.E.F.):	y = 578/8 + 0.967 (x -	610/8) M	1		
		= 72.2[5] + 0.967 (x)	(-76.2[5])			
		or -1.45 + 0.967x	А	1		
Calculate g	radient b' in $x - \overline{x} = b' (y - \overline{y})$:					
	b' = (47136 -	- 610 × 578/8) / (45212 - 57	78 ² /8)			
		= 3063.5 / 3451.5 =	0·887[6] B	1		
Find regres	sion line of x on y (A.E.F.):	x = 610/8 + 0.888 (y -	578/8) M	1		
		= 76.2[5] + 0.888 (y)	v – 72·2[5])			
		or $12.1 + 0.888y$	А	1 6		
Use regress	ion line for x on y at $y = 100$:	x = 101 [mins]	M1 A	1 2		
S.R. Usin	g regression line for y on x at $y =$	100: $x = 105$ [mins]	(B1)		
Find correla	ation coefficient r:					
EITHER:		$r^2 = bb' = 0.8580, r$	h = 0.926 M1 A	1		
OR:		$r = (47136 - 610 \times 5)^{-1}$	78/8) /			
	No. A start					
		$= 3063.5 / \sqrt{3169.5}$	× 3451.5)			
		= 0.926	(M1 A1) 2	[10]	
	Calculate g Find regress Calculate g Find regress S.R. Usin Find correla <i>EITHER:</i>	GCE A LEVEL – OctobeMark Scheme DetailsCalculate gradient b in $y - \overline{y} = b(x - \overline{x})$: $b = (47136 - \overline{x})$ Find regression line of y on x (A.E.F.):Calculate gradient b' in $x - \overline{x} = b' (y - \overline{y})$: $b' = (47136 - \overline{x})$ Find regression line of x on y (A.E.F.):Use regression line for x on y at $y = 100$: S.R. Using regression line for y on x at $y = \overline{y}$ Find correlation coefficient r: EITHER:	GCE A LEVEL – October/November 2012 Mark Scheme Details	GCE A LEVEL - October/November 2012 9231 Mark Scheme Details $arcolor (49682 - 610^2/8)$ $arcolor (49682 - 610^2/8)$ Calculate gradient b in $y - \overline{y} = b(x - \overline{x})$: $b = (47136 - 610 \times 578/8) / (49682 - 610^2/8)$ $arcolor (47136 - 610 \times 578/8) / (49682 - 610^2/8)$ $arcolor (47136 - 610 \times 578/8) / (49682 - 610^2/8)$ Find regression line of y on x (A.E.F.): $y = 578/8 + 0.967 (x - 610/8)$ M $arcolor (47136 - 610 \times 578/8) / (45212 - 578^2/8)$ $arcolor (47136 - 610 \times 578/8) / (45212 - 578^2/8)$ $arcolor (47136 - 610 \times 578/8) / (45212 - 578^2/8)$ Find regression line of x on y (A.E.F.): $x = 610/8 + 0.888 (y - 578/8)$ M $arcolor (47136 - 610 \times 578/8) / (45212 - 578^2/8)$ $arcolor (47136 - 610 \times 578/8)$ M $arcolor (47136 - 610 \times 578/8) / (45212 - 578^2/8)$ $arcolor (47136 - 610 \times 578/8) / (49682 - 610^2/8)(45212 - 578^2/8))$ $arcolor (47136 - 610 \times 578/8) / (49682 - 610^2/8)(45212 - 578^2/8))$ $arcolor (47136 - 610 \times 578/8) / (49682 - 610^2/8)(45212 - 578^2/8))$ $arcolor (47136 - 610 \times 578/8) / (49682 - 610^2/8)(45212 - 578^2/8))$ $arcolor (47136 - 610 \times 578/8) / (49682 - 610^2/8)(45212 - 578^2/8))$	GCE A LEVEL - October/November 2012 9231 23 Mark Scheme Details Part Mark Calculate gradient b in $y - \overline{y} = b(x - \overline{x})$: $b = (47136 - 610 \times 578/8) / (49682 - 610^2/8)$ $= 3063 \cdot 5 / 3169 \cdot 5 = 0.966[6]$ B1 B1 Find regression line of y on x (A.E.F.): y = 578/8 + 0.967 (x - 610/8) M1 = 72.2[5] + 0.967 (x - 76.2[5]) $or - 1.45 + 0.967x$ A1 A1 Calculate gradient b' in $x - \overline{x} = b' (y - \overline{y})$: $b' = (47136 - 610 \times 578/8) / (45212 - 578^2/8)$ $= 3063 \cdot 5 / 3451 \cdot 5 = 0.887[6]$ B1 B1 Find regression line of x on y (A.E.F.): x = 610/8 + 0.888 (y - 72.2[5]) or 12.1 + 0.888 (x	

	Page 9	Mark Scher	ne	Syllabus		Paper	
		GCE A LEVEL – October/	November 2012	9231		23	
Question Number	Mark Scheme Details						Total
11 (a)	<i>EITHER:</i> Simj	tically at equilibrium with extn. <i>e</i> : Use Newton's Law at general point blify to give ω^2 in $d^2x/dt^2 = -\omega^2 x$: allow stating result without derivati	$m d^{2}x/dt^{2} = mg - 8m$ $[or - mg + 8m]$ $d^{2}x/dt^{2} = -(8g/a)x or$	ng(e+x)/a M ng(e-x)/a]	B1 1 A1 A1		
	OR: Ass	sume SHM and find ω^2 from speed	v when				
		t slack, found from energy as below	$3ga/8 = \omega^2 (a^2/16 - a^2)^2 (a^2/16 - a^2)^2 = 8g/a$	² /64)	(M1) (A1) (A1)		
	Use $x = \frac{1}{4}c$	$a \cos \omega t \text{ or } \frac{1}{4} a \sin \omega t \text{ to find } \omega t$:	$\omega t = \cos^{-1}(-\frac{1}{2}) \text{ or } \frac{1}{21}$ = $2\pi/3$	$\pi + \sin(\sqrt{2})$ M	A1		
	Substitute a	$v = \sqrt{(8g/a)}$:	$t = (2\pi/3)\sqrt{a/8g} \mathbf{A}$	G.	A1	8	
	EITHER:	Find v^2 when first slack from an S	HM eqn: $v^2 = \omega^2 (a^2/16)$	$(-e^2) = 3ga/8$			
	OR: Fin	d v^2 when first slack using energy:			1 A1		
	(this resu	lt may be used above)	$v^2 = 9ga/8 - 3ga/4 =$	3 <i>ga</i> /8 (M1	A1)		
	Find further	r distance s_2 to rest:	$2gs_2 = v^2, s_2 = 3a/16$	б М	1 A1		
	Find total d	istance:	$\frac{1}{4}a + e + s_2 = \frac{9a}{16}a$	or $0.562[5]a$ M	1 A1	6	[14]

	Pa	age 10	Mark Schen		Syllabus	P	aper	
			GCE A LEVEL – October/	November 2012	9231		23	
Question Number		Mark Schem	e Details				Part Mark	Total
(b)		Find k by equ	uating area under graph to 1:	$k + 3k = 1, \ k = \frac{1}{4}$	M	I A1		
		Find $f(x)$ for	$0 < x \le 2$ and $2 < x \le 5$:	$\frac{1}{2}kx = \frac{x}{8}$ and $k = \frac{1}{4}$	A.G.	B1	3	
(i	i)	Integrate	to find $F(x)$:	$F(x) = x^2/16$ (0 \le x)	$x \leq 2$)			
				$\frac{1}{4}x - \frac{1}{4}$ (2 < .	$x \le 5$) M ²	I A1		
		Relate dis	st. fn. $G(y)$ of Y to X:	$\mathbf{G}(y) = \mathbf{P}(Y < y) = \mathbf{P}(x)$	$X^2 < y)$			
		(working	g may be omitted)	$= P(X < y^{1/2}) = F(y^1)$	/2)			
				$= y/16$ and $\frac{1}{4}y^{1/2} - $	¹ / ₄ M	I A1		
		Differenti	tate to find $g(y)$:	g(y) = 1/16 or 0.0625	$(0 \le y \le 4)$			
		(both res	sults reqd. for M1)	$1/8\sqrt{y}$	$(4 < y \le 25)$ M ²	I A1		
				[0 otherwise]			6	
(ii	i)	EITHER:	Find $E(Y)$ using $\int y g(y) dy$:	$E(Y) = (1/16) \int y dy + (1/16) \int y dy$	$(1/8)\int y^{1/2}\mathrm{d}y$	M1		
			Integrate and insert limits:	$= [y^2/32]_0^4 + [y^{3/2}/12]$	²⁵ ₄	A1		
				$= \frac{1}{2} + \frac{117}{12} = 10.2$	25 A.G.	A1		
		OR:	Find E(<i>Y</i>) using $\int x^2 f(x) dx$:	$E(Y) = (1/8) \int x^3 dx + \frac{1}{2}$	$\int x^2 dx$ (M1)		
			Integrate and insert limits:	$= [x^{4}/32]_{0}^{2} + [x^{3}/12]_{2}^{5}$		(A1)		
				$= \frac{1}{2} + \frac{117}{12} = 10.2$	25 A.G.	(A1)	3	
(iii	i)	EITHER:	Find median m_x of X and	$F(m_x) = \frac{1}{4} m_x - \frac{1}{4} = \frac{1}{2}$, $m_x = 3$			
			median m_y of Y (or $\sqrt{m_y}$):	$F(m_y) = \frac{1}{4} m_y^{1/2} - \frac{1}{4} =$	$1/_2$, $m_y = 9$ M	I A1		
		OR:	Show $m_y = m_x^2$:	$\mathbf{P}(Y < m_x^2) = \mathbf{P}(X^2 < m_x^2)$	$\left(\frac{2}{x}\right)$			
				$= \mathbf{P}(X < m_x)$	(M1	A1)	2	[14]