MARK SCHEME for the October/November 2012 series

9231 FURTHER MATHEMATICS

9231/22

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9231	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9231	22

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √*" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

		Page 4	Mark Schen		Syllabus	P	aper	
		GCE AS/A LEVEL – October/November 2012 9231			9231		22	
Questie Numbe		Mark Schem	e Details				Part Mark	Total
1		Find MI of d Find MI of r	isc A about O: isc B about O: od AB about O: ody about O:	$I_{A} = \frac{1}{2} ma^{2} + m(4a)^{2} [=$ $I_{B} = \frac{1}{2} ma^{2} + m(6a)^{2} [=$ $I_{rod} = \frac{1}{3} 3m(5a)^{2} + 3ma$ $I_{body} = I_{A} + I_{B} + I_{rod} = 8$	$= (73/2)ma^2$ $= 28ma^2$	B1 B1 B1 M1 A1	5	[5]
2 (i))	Find eqn of r Eliminate <i>T</i> S.R. : M1 on	motion for disc: motion for particle: to find angular accel.: ly for $1.5g \times 0.4 = 0.2 \text{ d}^2\theta/\text{d}t^2$ 0, $(\text{d}\theta/\text{d}t)^2 = 10\pi$, $v = 2.24$]	$T \times 0.4 = 0.2 d^{2}\theta/dt^{2}$ $1.5g - T = 1.5 \times 0.4 d^{2}\theta$ $1.5g = (0.6 + 0.5) d^{2}\theta/dt^{2} = 15g/11 \text{ or } 13$	$d^2\theta/dt^2$	M1 M1 A1	4	
(ii	i)	EITHER Integrate to f Apply initial OR	find $(d\theta/dt)^2$: conds. and $\theta = \pi/6$:	$\frac{1}{2} (d\theta/dt)^2 = (15g/11)\theta$ $(d\theta/dt)^2 = 5\pi g/11 \text{ or } 14$		M1 A1		
			o find $(d\theta/dt)^2$: f particle:	$\frac{1}{2} 0.2 (d\theta/dt)^{2} + \frac{1}{2} 1.5$ = 1.5g × 0.4 × π/6 (dθ/dt)^{2} = 5πg/11 or 1.2 v = 0.4 dθ/dt = 51 [m s	4.3	(M1) (A1) B1	3	[7]
3		Use energy t (note that v r	o find speed v when AP vertical: o find speed w when AP at angle θ : need not be found) radially to find tension T:	$\frac{1}{2}mv^{2} = mga [v^{2} = 2ga$ $\frac{1}{2}mw^{2} = \frac{1}{2}mv^{2}$ $-mg(a-x)(1)$ $[mw^{2} = 2mg\{x + (a-x)]$ $T - mg\cos\theta = mw^{2}/(a)$	- cos θ)) cos θ}]	B1 M1 A1 M1 A1		
		Substitute fo		$T = mg\{3\cos\theta - mw\}/(a)$ $T = mg\{3\cos\theta + 2x/(a)$ $2x = 3(a-x), x/a = 3$	(x-x) A.G.		7 2	[9]
4		Resolve spec Find v^2	eds parallel to barrier: eds perpendicular to barrier: f K.E. to that before collision:	$v \cos \theta = u \cos 60^{\circ} [= u \\ v \sin \theta = \frac{1}{3} u \sin 60^{\circ} [= u^{2} \\ v^{2} = u^{2} (\frac{1}{12} + \frac{1}{4}) = \frac{1}{4} \\ \frac{1}{2} 2m(u^{2} - v^{2}) = \frac{2}{3} \times \frac{1}{4}$	$= u/2\sqrt{3}$] $\frac{1}{3}u^2$	B1 M1 A1 M1 B1	5	
(i))	Find (reverse	ed) speed of <i>P</i> using impulse:	$2mw_P = \frac{2}{3}mu(1 + \sqrt{3}) - w_P = \frac{1}{3}u$		M1 A1	2	
(ii	i)	OR by conse	ed) speed of Q using impulse: ervation of momentum:	$mw_Q = \frac{2}{3}mu(1 + \sqrt{3}) - \frac{2mu/3}{3} - \frac{mw_Q}{3} = -\frac{2mu}{3}$ $w_Q = (2/\sqrt{3} - 1/3) u (A)$	$\sqrt{3} + mu$	M1 A1		
		Find coeffici	ent of restitution:	$(w_P + w_Q) / (v + u)$ = 2/(1 + $\sqrt{3}$) or $\sqrt{3} - 1$		M1 A1	4	[11]

Page 5	5
--------	---

Mark Scheme	
GCE AS/A LEVEL – October/November 2012	92

yllabus Paper 9231 22

Question Number	Mark Scheme Details			Part Mark	Total
5	Find (or verify) AP by equating equilibrium tensions:				
		8mg(AP-2a)/2a	M1 A1		
		= 16mg (6a - AP)/4a AP = 32a/8 = 4a	A1 A.G A1	3	
(i)	Apply Newton's law at general point, e.g.: (lose A1 for each incorrect term)	$m d^{2}x/dt^{2} = 8mg (2a - x)/2a$ - 16mg (2a + x)/4a			
	Or	$m d^2 y/dt^2 = -8mg (2a + y)/2a + 16mg (2a - y)/4a$	M1 A2		
	Simplify to give standard SHM eqn, e.g.: S.R. : B1 if no derivation (max 3/6)	$\mathrm{d}^2 x/\mathrm{d}t^2 = -8gx/a$	A1		
	Find period <i>T</i> using SHM with $\omega = \sqrt{(8g/a)}$:	$T = 2\pi/\sqrt{(8g/a)} = \pi\sqrt{(a/2g)}$ A	. G M1 A1	6	
(ii)	Find max speed using ωA with $A = a$:	$v_{max} = \sqrt{(8g/a) \times a}$ = $\sqrt{(8ag) \text{ or } 2\sqrt{(2ag)}}$	M1 A1	2	[11]
6 (i)	Find prob. that first snow falls on 20 th :	$(1 - 0.2)^{19} \times 0.2 = 0.00288$	M1 A1	2	
(ii)	Find prob. that first snow falls before 5 th :	$1 - (1 - 0.2)^4 = 0.59[0]$	M1 A1	2	
(iii)	Formulate condition for day <i>n</i> of month: Take logs (any base) to give bound for <i>n</i> : Find n_{\min} :	$1 - (1 - 0.2)^n \ge 0.95, \ 0.8^n \le 0.05$ n > log 0.05/log 0.8 n > 13.4, n _{min} = 14	M1 M1 A1	3	[7]
7	Integrate $f(x)$ to find $F(x)$ for $1 \le x \le 4$: Relate dist. fn. $G(y)$ of <i>Y</i> to <i>X</i> for $1 \le x \le 4$:	$F(x) = x^{2}/15 + c = (x^{2} - 1)/15$ $G(y) = P(Y < y) = P(X^{3} < y)$ $= P(X < y^{1/3}) = F(y^{1/3})$ $= (y^{2/3} - 1)/15$	M1 A1	4	
(i)	Find relation for median <i>m</i> of <i>Y</i> : Evaluate <i>m</i> :	$G(m) = \frac{1}{2}, m^{2/3} = \frac{17}{2}$ m = 24.8	M1 A1 A1	3	
(ii)	EITHER Find $g(y)$ and formulate $E(Y)$:	$g(y) = 2y^{-1/3}/45$ E(Y) = $\int yg(y)dy = \int 2y^{2/3}/45 dy$	M1 A1		
	OR Formulate $E(Y)$ in terms of <i>X</i> :	$E(Y) = E(X^{3}) = \int 2x^{4}/15 dx$ $\left[\frac{2y5}{3}\right]^{54} \left[2x5\right]^{4}$	(M1 A1)		
	Integrate and apply limits:	$E(Y) = \begin{bmatrix} \frac{3}{75} \\ 1 & or \end{bmatrix}_{1} \begin{bmatrix} \frac{2x5}{75} \\ \frac{75}{5} \end{bmatrix}_{1}$ = 2(1024 - 1)/75 = 682/25 or 27.3	M1 A1	4	[11]

		Page 6	Mark Sche	me S	yllabus F	Paper	
			GCE AS/A LEVEL – Octob		9231	22	
		1				1	
8	(i)	Calculate gr	adient b in $y - \overline{y} = b(x - \overline{x})$:				
	()			$b = (761 \cdot 3 - 72 \cdot 4 \times 78/8)/(7)$	$769.9 - 72.4^2/8$		
					M1		
				= 55.4/114.68			
				[or 6·925/14·335]			
				= 1385/2867 or 0.483[1]	A1		
		Find regress	ion line:	y - 9.75 = 0.483 (x - 9.05)			
				$Or \ y = 5.38 + 0.483x$	M1 A1	4	
	(ii)	Find correla	tion coefficient r:				
			$r = (761 \cdot 3 - 72 \cdot 4 \times 7)$	$8/8)/\sqrt{(769.9-72.4^2/8)}$ (820)	$(-78^2/8)$ M1		
				$= 55.4 / \sqrt{(114.68 \times 59.5)}$			
				$[or \ 6.925 / \sqrt{14.335 \times 7.43}]$	375)] A1		
				= 0.671	*A1	3	
	(iii)	State both h	ypotheses:	$H_0: \rho = 0, H_1: \rho > 0$	B1		
			correct tabular one-tail <i>r</i> value:	$r_{8,5\%} = 0.621$	*B1		
		Valid metho	od for reaching conclusion:	Reject H ₀ if $ r >$ tabular va	lue M1		
			clusion (AEF, dep *A1, *B1):	There is positive correlation		4	[11]
9		Estimate po	pulation variance using A's sample:	$s_A^2 = (481 \cdot 1 - 57 \cdot 4^2/7) / 6$			
		(allow use o	f biased here: $1.489 \text{ or } 1.22^2$)	= 521/300 or 1.737 or 1	·318 ² M1 A1		
		Find confide	ence interval:	$57.4/7 \pm t \sqrt{(s_{\rm A}^2/7)}$	M1		
		State or use	correct tabular value of <i>t</i> :	$t_{6.0.975} = 2.447 [or 2.45]$	A1		
		Evaluate C.I	l. correct to 3 s.f.:	$8.2 \pm 1.22 \text{ or } [6.98, 9.42]$	A1	5	
		State suitabl	e assumptions (A.E.F.):	Population of <i>B</i> is Normal			
				and has same variance as for			
		State hypoth		$\mathbf{H}_0: \mu_A = \mu_B , \ \mathbf{H}_1: \mu_A > \mu_B$	B1		
			pulation variance using <i>B</i> 's sample:				
			f biased here: $0.988 \text{ or } 0.994^2$)	$= 1.235 \text{ or } 1.111^2$	B1		
		Estimate pop	pulation variance for combined sam		2		
				$= 192/125 \ or \ 1.536 \ or \ 1$			
		Calculate va	lue of t (to 2 d.p.):	$t = (57 \cdot 4/7 - 37/5)/s\sqrt{(1/7)}$	+1/5) M1		
				= 0.8/0.726 = 1.10[2]	*A1		
		State or use	correct tabular value	$t_{10,0.95} = 1.812 [or 1.81]$	*B1		
			clusion (AEF, dep *A1, *B1): to only A1 if intermediate result to 3	μ_A is not greater than μ_B s.f.	B1		
		S.R.: Invalid	d method for calculating $t \pmod{6/9}$: $t = 0.8/\sqrt{(s_A^2/7 + s_B^2/5)}$	(M1)		
				= 0.8/0.704 = 1.14	(A1)	9	[14]

ļ		Page 7		Mark Schem		Syllabus	Р	aper	
			GCE AS/A LEV	/EL – Octobei	L – October/November 2012 9231			22	
10 ((a)	Stating or in Stating or in	intact pts with plane, spectrum plying reactions R_P , R_P applying $F_P = F_S$ by momplying 3 indep. eqns to the second sec	R_s same as for <i>B</i> oments about O_A	2: 13	$3 \times N$	B1 B1 11 A1		
		Up to 2 reso		↑ for A : ↑ for C :		= W			
		Moments ab	out <i>S</i> for <i>A</i> :		$F_P (r + r \cos \theta) + Wr s$ $= R_P r \sin \theta$	in $ heta$			
		•	and/or <i>S</i> : $_P$ to find bound for μ : R_S to find bound for μ ?		$R_P = 3W/2$ $R_S = W/2$ $F = (W \sin \theta) / 2(1 + \cos \theta)$ $\mu \ge \sin \theta / 3(1 + \cos \theta)$ $\mu' \ge \sin \theta / (1 + \cos \theta)$) A.G. M	A1 A1 A1 11 A1 G. M1	14	[14]
((b)	Find $E(X)$ us	sing $\int x f(x) dx$:		$E(X) = \int_{2}^{4} \frac{3}{(5x^{2} - x^{3} - x^{3})^{2}}$ = $\frac{1}{2}(4^{3} - 2^{3}) - 3(4^{4} - 2^{4})^{2}$ = $28 - 18 - 7 \cdot 2 = 2 \cdot 8$	$\frac{4x}{10} \frac{dx}{dx} = \frac{10}{10} \frac{10}{10} \frac{dx}{dx} = \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{dx}{dx} = \frac{10}{10} \frac{10}{10$	41 A1 *A1		
		Verify E(X)	within 10% of 2.69 (.	A1 dep *A1):	(E(X) - 2.69)/2.69 = 0. or $1.1 \times 2.69 = 2.96 > 1.$		41 A1		
		Show deriva	ation of tabular entry:		$\int_{3.2}^{3.6} (5x - x^2 - 4)/1$ = 60[3(5x ² /2 - x ³ /3 - 4 or [45x ² - 6x ³ - 72x]13 = 122.4 - 83.328 - 28. or 60 × 0.1712 = 10.272	x)/10]13.2¹3.6 1.2 13. 6 8	M1 G A1	5	
			st) null hypothesis: st 2 cells since exp. val	lue < 5:	$H_0: f(x)$ fits data (A.E.I $O: \dots 8$ $E: \dots 14.208$		B1 B1	2	
		Calculate χ^2	² (to 2 d.p.):		$\chi^2 = 0.8126 + 0.0584 + 0.0584$	+ 0·2011 = 3·78[47] M	1 *A1		
		[or if no cell Valid metho	consistent tabular valu ls combined: od for reaching conclus (A.E.F., dep *A1, *B1	sion:	$\chi_{3 0.9}^{2} = 6.25[1]$ $\chi_{4, 0.9}^{2} = 7.78]$ Accept H ₀ if $\chi^{2} < tabu 3.78 < 6.25 so f(x) doe$	lar value	*B1 M1 A1	7	[14]