## MARK SCHEME for the October/November 2010 question paper

## for the guidance of teachers

# 9231 FURTHER MATHEMATICS

9231/01

Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



| Page 2 | Mark Scheme: Teachers' version      | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2010 | 9231     | 01    |

#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme: Teachers' version      | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2010 | 9231     | 01    |

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

### Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

|   | Page 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mark Scheme: Teachers' version                                                                                                                                         |      | Syllabus              | Paper |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------|-------|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCE A LEVEL – October/November 2                                                                                                                                       | 010  | 9231                  | 01    |
| 1 | $1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 - \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $+\left(\frac{1}{2}(e^{2x}-e^{-2x})\right)^2 = \frac{1}{4}(e^{2x}+e^{-2x})^2$                                                                                          | M1A1 | expression simplified | đ     |
|   | Length = $\int_{0}^{\frac{1}{2}} \frac{1}{2} e^{\frac{1}{2}} e^{\frac{1}$ | $^{2x} + e^{-2x} dx = \frac{1}{4} \left[ \left( e^{2x} - e^{-2x} \right) \right]_{0}^{\frac{1}{2}}$                                                                    | M1   | integrate             |       |
|   | $=\frac{1}{4}\left(e^{1}-e^{-1}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-\frac{1}{4}(e^0 - e^0) = \frac{e^2 - 1}{4e}$ AG                                                                                                                      | A1   | cao                   | [4]   |
| 2 | <i>n</i> th term is $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\left(\frac{1}{n} - \frac{1}{n+2}\right)$                                                                                                                             | M1A1 |                       |       |
|   | $S_N = \frac{1}{2} \begin{bmatrix} \left(\frac{1}{N} - \frac{1}{N}\right) \\ \left(\frac{1}{2} - \frac{1}{N}\right) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{1}{N+2} + \left(\frac{1}{N-1} - \frac{1}{N+1}\right) + \left(\frac{1}{N-2} - \frac{1}{N}\right) + \dots$ $\frac{1}{4} + \left(\frac{1}{1} - \frac{1}{3}\right)$ | M1   | sum of terms          |       |
|   | $=\frac{1}{2}\left[\frac{3}{2}-\frac{1}{N+1}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{1}{2} - \frac{1}{N+1}$                                                                                                                                          | A1   | after cancellation    | [4]   |
|   | $Limit = \frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                        | B1√  |                       | [1]   |
| 3 | Area = $\int_{1}^{4} \left( x^{\frac{1}{2}} - \right)^{\frac{1}{2}} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $dx = \left[\frac{2}{3}x^{\frac{3}{2}} - 2x^{\frac{1}{2}}\right]_{1}^{4} = 8/3$                                                                                        | B1   |                       |       |

$$\overline{y} = \frac{\frac{1}{2} \int_{1}^{4} (x - 2 + \frac{1}{x}) dx}{A} = \frac{\frac{1}{2} \left[ \frac{x^2}{2} - 2x + \ln x \right]_{1}^{4}}{A}$$
M1 use of  $\frac{\frac{1}{2} \int y^2 dx}{A}$ 
M1 integrate  
A1 correct

Final answer:  

$$\frac{3}{8}\left(\ln 2 + \frac{3}{4}\right)$$
 or  $\frac{3}{16}\left(\ln 4 + \frac{3}{2}\right)$  or  $\frac{3}{8}\ln 2 + \frac{9}{32}$  etc (ACF) A1

[5]

|   | Page 5                                                                                                                   | Mark Scheme: Teachers' version                                                                                                                                                                                                                            |                      | Syllabus                                                      | Paper   |
|---|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------|---------|
|   |                                                                                                                          | GCE A LEVEL – October/November 2                                                                                                                                                                                                                          | 2010                 | 9231                                                          | 01      |
| 4 | Assume $7^{2k+1}$                                                                                                        |                                                                                                                                                                                                                                                           | B1<br>B1<br>M1<br>A1 | (k + 1) th term<br>in appropriate for<br>convincing arguments |         |
|   | Alternative sol<br>Consider $(7^{2k+1} = 48(7^{2k+1} + 5$ which is divisi                                                | Lution for final three marks:<br>${}^{3} + 5^{k+4}) - (7^{2k+1} + 5^{k+3})$<br>${}^{k+3}) - 44.5^{k+3}$<br>ble by 44                                                                                                                                      | M1<br>M1<br>A1       | in appropriate fo<br>convincing argu                          |         |
| 5 | $I_{n+2} = [-(1-x)^n]$                                                                                                   | $[n^{n+2}\cos x] - \int (n+2)(1-x)^{n+1}\cos x dx$                                                                                                                                                                                                        | M1A1                 |                                                               |         |
|   | =(1+(n+2))                                                                                                               | + $(n+2)[((1-x)^{n+1}\sin x) + \int (1-x)^n \sin x dx]$                                                                                                                                                                                                   | M1                   | integrate by part                                             | s again |
|   |                                                                                                                          | 1) $(n + 2) I_n$ AG<br>; $I_4 = 1 - 4 \times 3I_2$ ; $I_2 = 1 - 1 \times 2I_0$                                                                                                                                                                            | A1<br>M1             |                                                               | [4]     |
|   | $I_0 = \int_0^1 \sin x dx =$                                                                                             | $= 1 - \cos 1$                                                                                                                                                                                                                                            | B1                   |                                                               |         |
|   |                                                                                                                          | $-12(1-2I_0)) = 0.0177$                                                                                                                                                                                                                                   | M1A1                 |                                                               | [4]     |
|   | $OR I_0 = 1 - \cos 1 I_2 = 2\cos 1 - 1 I_4 = 13 - 24\cos 1 I_6 = 0.0177 Accept decima$                                   |                                                                                                                                                                                                                                                           | B1<br>M1<br>A1<br>A1 | (use of RF)<br>cao                                            |         |
| 6 | $ \begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 1 \\ 0 & -3 & 4 \\ 0 & 1 & -1 \end{pmatrix} $<br>Dim = 4 $\Rightarrow \alpha =$ | $ \begin{pmatrix} 1 & \alpha \\ -2\alpha \\ 4 & -2-2\alpha \\ 3 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & \alpha \\ 0 & -1 & 1 & -2\alpha \\ 0 & 0 & 1 & 4\alpha - 2 \\ 0 & 0 & 0 & 6\alpha - 6 \end{pmatrix} $<br>$\neq 1 \text{ AG} $ | M1A1<br>A1           |                                                               | [3]     |
|   | a+2b-c=0<br>2a+3b-c=0<br>2a+b+2c=0<br>b-3c=0                                                                             |                                                                                                                                                                                                                                                           | M1                   | attempt to solve                                              |         |
|   | Linearly indep                                                                                                           | endent and dim R(T) not 4: basis                                                                                                                                                                                                                          | A1                   |                                                               | [2]     |
|   | 2a+b+2c=1                                                                                                                | Attempt to find $a, b, c$ in terms of $q$ or $p$                                                                                                                                                                                                          |                      |                                                               |         |
|   | b - 3c = q<br>6p + q = 3                                                                                                 |                                                                                                                                                                                                                                                           | M1A1<br>A1           |                                                               | [3]     |
|   | <u>Alternative sol</u><br>Use row opera                                                                                  | tions as in (i)                                                                                                                                                                                                                                           | M1                   |                                                               |         |
|   | Final column                                                                                                             | $\begin{vmatrix} 1 - 2p \\ 4p - 2 \\ 6p + q - 3 \end{vmatrix}$                                                                                                                                                                                            | A1                   |                                                               |         |
|   | 6p + q = 3                                                                                                               | (0p+q-3)                                                                                                                                                                                                                                                  | A1                   |                                                               |         |

| Page 6                                              | Mark Scheme: Teachers' ve                                                                                                                                           | rsion          | Syllabus                                        | Paper       |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------|-------------|
|                                                     | GCE A LEVEL – October/Novem                                                                                                                                         |                | 9231                                            | 01          |
| $y = \frac{1}{x+1}$                                 | $\therefore x = \frac{1-y}{y}$                                                                                                                                      | M1             | use in given cub                                | ic equation |
| Gives $6y^3$ –                                      | $x^{2}7y^{2} + 3y - 1 = 0$ AG<br>a expression = sum of roots = 7/6                                                                                                  | A1<br>B1       |                                                 | [2          |
| $n=2:\sum_{i=1}^{n}\overline{a_{i}}$                | $\frac{1}{(\alpha + 1)^2} = \left(\sum \frac{1}{(\alpha + 1)}\right)^2 - 2\sum '' \alpha \beta'' = \frac{13}{36}$                                                   | B1             |                                                 | [2          |
| From cubic $6\sum \left(\frac{1}{\alpha+1}\right)$  | $ \lim_{y \to 1} y, = \frac{13}{36} + 3\left(\frac{7}{6}\right) - 3 = 0 $                                                                                           | M1             |                                                 |             |
|                                                     | = 73/216                                                                                                                                                            | A1             |                                                 | [2          |
| LHS = $\sum$                                        | $\left(\frac{(\beta+1)(\gamma+1)(\alpha+1)}{(\alpha+1)^3}\right)$                                                                                                   | M1             |                                                 |             |
| $=\left(\frac{1}{6}\right)^{-1} \times \frac{1}{2}$ | 73 216                                                                                                                                                              | M1             | recognise produc                                | et of roots |
| = 73/36 A                                           |                                                                                                                                                                     | A1             |                                                 | [3          |
| (i) 1 + sin                                         | $\theta = 3\sin\theta \Longrightarrow \sin\theta = \frac{1}{2}$                                                                                                     | M1             |                                                 |             |
| $\left(\frac{3}{2},\frac{\pi}{6}\right)$            | ) and $\left(\frac{3}{2}, \frac{5\pi}{6}\right)$                                                                                                                    | A1             | (both)                                          | [2          |
| (ii)<br>—                                           |                                                                                                                                                                     | B1<br>B1<br>B1 | circle<br>cardioid behavio<br>cardioid closed a |             |
|                                                     | ct integrands                                                                                                                                                       | M1             |                                                 |             |
| $2 \times \frac{1}{2}$                              | $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (3 - 4\cos 2\theta - 2\sin \theta) d\theta$                                                                                   | M1             |                                                 |             |
|                                                     | $-2\sin 2\theta + 2\cos\theta\Big]_{\pi/6}^{\pi/2}$                                                                                                                 | M1A1           |                                                 |             |
| $=\pi$                                              | AG                                                                                                                                                                  | A1             |                                                 | [5          |
| Altern<br>Area i $2 \times \frac{1}{2}$             | $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 9\sin^2\theta \mathrm{d}\theta = \frac{9}{2} \left[ \theta - \frac{1}{2}\sin 2\theta \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$ | M1             |                                                 |             |

© UCLES 2010

 $=\frac{9}{2}\left(\frac{\pi}{3}+\frac{\sqrt{3}}{4}\right)$ 

A1

www.theallpapers.com

| Page 7 | Mark Scheme: Teachers' version      | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2010 | 9231     | 01    |

Area inside  $C_2$ :

$$2 \times \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 1 + 2\sin\theta + \frac{1}{2}(1 - \cos 2\theta) d\theta$$
$$= \left[\frac{3\theta}{2} - 2\cos\theta - \frac{1}{4}\sin 2\theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$$
$$= \left(\frac{\pi}{2} + \frac{9\sqrt{3}}{8}\right)$$

Subtraction  
Required area = 
$$\pi$$
 AG

9  $(3-\lambda)[(2-\lambda)(3-\lambda)-1]+1(-(3-\lambda))=0$  $(3-\lambda)(\lambda-1)(\lambda-4)=0$  $\lambda = 1, 3, 4$ 

$$\begin{pmatrix} 3-\lambda & -1 & 0\\ -1 & 2-\lambda & -1\\ 0 & -1 & 3-\lambda \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$$
  
Solve for  $\lambda = 1$ :  $(1, 2, 1)$ 

Solve for  $\lambda = 1$ : (1, 2, 1) Solve for  $\lambda = 3$ : (1, 0, -1) Solve for  $\lambda = 4$ : (1, -1, 1)

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$

$$\mathbf{D} = \begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 8 \end{pmatrix}$$

10 
$$\cos 5\theta = c^5 - 10c^3s^2 + 5cs^4$$
  
 $\sin 5\theta = 5c^4s - 10c^2s^3 + s^5$   
 $\tan 5\theta = \frac{t^5 - 10t^3 + 5t}{1 - 10t^2 + 5t^4}$  AG

$$\tan 5\theta = 0 \Longrightarrow \theta = \frac{n\pi}{5}$$
  
Solutions  $\tan \frac{n\pi}{5}$  for  $n = 1, 2, 3, 4$   
Roots  $\pm \tan \frac{\pi}{5}, \pm \tan \frac{2\pi}{5}$   
Product of these roots = 5  
 $\tan \frac{\pi}{5} \tan \frac{2\pi}{5} = \sqrt{5}$ 

M1

| (A1      | if not earned earlier) |     |
|----------|------------------------|-----|
| M1<br>A1 |                        | [5] |

| M1 | characteristic equation |
|----|-------------------------|
| M1 | factorise               |
| A1 |                         |

B1 $\sqrt{}$  eigenvectors as columns

$$(\operatorname{except} \begin{pmatrix} 0\\0\\0 \end{pmatrix})$$

M1A1
$$\sqrt{1}$$
 ft on eigenvalues [3]

M1A1use of de Moivre for 
$$(c + is)^5$$
A1M1A1intermediate step needed[5]M1A1justify values of  $n$ [2]B1

M1

A1

[3]

|    | Page 8                                                              | Mark Scheme: Teachers                                     | ' version   | Syllabus           | Paper |
|----|---------------------------------------------------------------------|-----------------------------------------------------------|-------------|--------------------|-------|
|    |                                                                     | GCE A LEVEL – October/No                                  | vember 2010 | 9231               | 01    |
| 11 | z' = y + xy'                                                        |                                                           | B1          |                    |       |
|    | $z^{\prime\prime} = 2y^{\prime} + xy^{\prime\prime}$                |                                                           | B1          |                    |       |
|    | Obtain result                                                       |                                                           | B1          |                    | [3]   |
|    | Auxiliary equat                                                     | ion: $m^2 + 4 = 0$ : $m = \pm 2i$                         | M1          |                    |       |
|    | CF: $A\cos 2x + h$                                                  |                                                           | A1          |                    |       |
|    | PI: $z = ax^2 + bx$                                                 | + <i>c</i>                                                |             |                    |       |
|    | Differentiate tw                                                    | ice and substitute                                        | M1          |                    |       |
|    | a = 2, b = 0, c =                                                   | 3                                                         | A1          |                    |       |
|    | GS: $z = A\cos 2x$                                                  | $x + B\sin 2x + 2x^2 + 3$                                 | A1          | their CF + their P | Ι     |
|    | $y = 0, x = \frac{1}{2}\pi$ :                                       | $(z=0)$ gives $A = \frac{\pi^2}{2} + 3$                   | B1          |                    |       |
|    | $z' = -2A\sin 2x + $                                                | $2B\cos 2x + 4x$                                          | M1          |                    |       |
|    | $y' = -2, x = \frac{\pi}{2}$                                        | $(z'=-\pi)$ gives $B=\frac{3\pi}{2}$                      | A1          |                    |       |
|    | $y = \frac{1}{x} \left( \left( \frac{\pi^2}{2} + 3 \right) \right)$ | $\left)\cos 2x + \frac{3\pi}{2}\sin 2x + 2x^2 + 3\right)$ | A1          |                    | [9]   |

#### **12 EITHER**

| $\Rightarrow$ $\Rightarrow$ | $(x^{2} - 2x + \lambda)(2x + 2\lambda) - (x^{2} + 2\lambda x)(2x - 2) = 0$<br>(\lambda + 1)x <sup>2</sup> - \lambda x - \lambda^{2} = 0<br>t most 2 values of x and at most 2 stationary point | M1<br>A1<br>s A1 |                     | [3] |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|-----|
| . ,                         | al distinct roots, $\lambda^2 > 4(\lambda + 1)(-\lambda^2)$<br>$(\lambda) > 0 \therefore \lambda > -\frac{5}{4}$ AG                                                                            | M1<br>A1         | use of discriminant | [2] |
| (iii) Vert. as              | ymptotes when $x^2 - 2x + \lambda = 0$                                                                                                                                                         | M1               |                     |     |

A1

M1

A1 B1

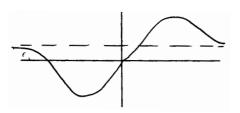
(iii) Vert. asymptotes when 
$$x^2 - 2x + \lambda = 0$$
  
 $b^2 - 4ac > 0 \Rightarrow 4 - 4\lambda > 0$   
For two vert. asymp.  $\lambda < 1$ 

(iv) (a) 
$$y = 0 \Rightarrow x^2 + 2\lambda x = 0$$
  
 $\Rightarrow x = 0 \text{ or } -2\lambda$   
(b)  $y = 1: x = \frac{\lambda}{2\lambda + 2}$ 

(v) (a)  $\lambda < -2$ : no stat points: 2 vert. asymp



**(b)**  $\lambda < 2$ : 2 stats points: no vert. asymp



B13 branchesB1completely correct shape

(both)

[2]

[3]

| B1 | max, min, horiz asymp |     |
|----|-----------------------|-----|
| B1 | correct shape         | [4] |

| Page 9 | Mark Scheme: Teachers' version      | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2010 | 9231     | 01    |

#### OR

| Normal to plane: $(2, 3, 4) \times (-1, 0, 1) = (3, -6, 3)$ | M1A1 |                                 |
|-------------------------------------------------------------|------|---------------------------------|
| $\mathbf{r}.(1, -2, 1) = d$ and point $(2, 1, 4)$           | M1   | substitute point into plane eqn |
| d = 4  x - 2y + z = 4                                       | A1   | [4]                             |

M1 M1

A1

Alternative:

| $ \begin{array}{l} x = 2 + 2\lambda - \mu \\ y = 1 + 2\lambda \\ z = 4 + 4\lambda + \mu \end{array} \right\}  x + z = 6 + 6\lambda $ | M1A1 |
|--------------------------------------------------------------------------------------------------------------------------------------|------|
| $z = 4 + 4\lambda + \mu$<br>$\therefore x + z = 6 + 2(y - 1)$                                                                        | M1   |
| $\therefore x - 2y + z = 4$                                                                                                          | A1   |

| x - 4y + 5z = 12                                         |
|----------------------------------------------------------|
| x - 2y + z = 4 Solve by eliminating one variable         |
| Use parameter and express all 3 variables in terms of it |
| e.g. $x = 3t - 4$ , $y = 2t - 4$ , $z = t$               |
| $\mathbf{r} = (-4, -4, 0) + t (3, 2, 1)$                 |

Alternative:

Direction of line = 
$$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -4 \\ 5 \end{pmatrix} = t \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
 M1A1  
Find any point on line e.g.  $\begin{pmatrix} -4 \\ -4 \\ 0 \end{pmatrix}$ ,  $\begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$  etc.  
 $\therefore \mathbf{r} = \begin{pmatrix} -4 \\ -4 \\ +t \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$  B1

$$\therefore \mathbf{r} = \begin{pmatrix} -4\\0 \end{pmatrix} + t \begin{pmatrix} 2\\1 \end{pmatrix}$$

Line *l*:  $\mathbf{r} = (a, 2a + 1, -3) + a(3c, -3, c)$ Plane: x - 2y + z = 4

Distance A to plane:

| $\frac{a-2(2a+1)-3-4}{\sqrt{6}}$ | $=\frac{15}{\sqrt{6}}$ | М |
|----------------------------------|------------------------|---|
| 3a + 9 = 15                      |                        | М |
| a = 2                            |                        | А |

$$\sin \theta = \frac{3c+6+c}{\sqrt{6}\sqrt{9c^2+9+c^2}}$$
  
$$\therefore \frac{4c+6}{\sqrt{6}\sqrt{9+10c^2}} = \frac{2}{\sqrt{6}}$$
  
$$6c^2 - 12c = 0: \ c = 2$$
  
(Penalise only once for negative values.)

| 1A1 |                                 |
|-----|---------------------------------|
| 1   | substitute point into plane eqn |
| 1   | [4]                             |

or equivalent

[3]

| M1       |                             |     |
|----------|-----------------------------|-----|
| M1<br>A1 | correct use of modulus sign |     |
| M1A1     |                             |     |
| M1       | solve for <i>c</i>          |     |
| A1       |                             | [7] |