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1 Find the area of the region enclosed by the curve with polar equation r = 2�1 + cos 1�, for 0 ≤ 1 < 20.

[4]

2 Prove by mathematical induction that 52n − 1 is divisible by 8 for every positive integer n. [5]

3 The cubic equation x3 − 2x2 − 3x + 4 = 0 has roots !, ", '. Given that c = ! + " + ', state the value

of c. [1]

Use the substitution y = c − x to find a cubic equation whose roots are ! + ", " + ', ' + !. [3]

Find a cubic equation whose roots are
1! + " ,

1" + ' ,
1' + ! . [2]

Hence evaluate
1

�! + "�2
+ 1

�" + '�2
+ 1

�' + !�2
. [2]

4 Let In = Ô 1

0

1

�1 + x2�n dx. Prove that, for every positive integer n,

2nIn+1
= 2−n + �2n − 1�In. �5�

Given that I
1
= 1

4
0, find the exact value of I

3
. [3]

5 Use the method of differences to show that

NÐ
r=1

1

�2r + 1��2r + 3� = 1

6
− 1

2�2N + 3� . [5]

Deduce that

2NÐ
r=N+1

1

�2r + 1��2r + 3� < 1

8N
. [4]

6 The matrix A is given by

A =
` 4 −5 3

3 −4 3

1 −1 2

a
.

Show that e =
`

1

1

1

a
is an eigenvector of A and state the corresponding eigenvalue. [2]

Find the other two eigenvalues of A. [4]

The matrix B is given by

B =
`−1 4 0−1 3 1

1 −1 3

a
.

Show that e is an eigenvector of B and deduce an eigenvector of the matrix AB, stating the

corresponding eigenvalue. [3]
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7 By considering the binomial expansion of

@Ï − 1Ï
A6

, where Ï = cos 1 + i sin 1, express sin61 in the

form

1
32
�p + q cos 21 + r cos 41 + s cos 61�,

where p, q, r and s are integers to be determined. [6]

Hence find the exact value of Ó 1
4
0

0

sin61 d1. [4]

8 The linear transformations T
1

: >4 → >4 and T
2

: >4 → >4 are represented by the matrices M
1

and M
2

respectively, where

M
1
=
�

1 −2 3 5

3 −4 17 33

5 −9 20 36

4 −7 16 29

�

and M
2
=
�

1 −2 0 −3

2 −1 0 0

4 −7 1 −9

6 −10 0 −14

�

.

The null spaces of T
1

and T
2

are denoted by K
1

and K
2

respectively. Find a basis for K
1

and a basis

for K
2
. [6]

It is given that a =
�

1

2

3

4

�

. The vectors x
1

and x
2

are such that M
1
x

1
= M

1
a and M

2
x

2
= M

2
a. Given

that x
1
− x

2
=
�

p

5

7

q

�

, find p and q. [4]

9 Find x in terms of t given that

4
d2x

dt2
+ 4

dx

dt
+ x = 6e−2t,

and that, when t = 0, x = 5
3

and
dx

dt
= 7

6
. [9]

State lim
t→∞ x. [1]

[Questions 10 and 11 are printed on the next page.]
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10 The curve C has equation y = 2x2 − 3x − 2

x2 − 2x + 1
. State the equations of the asymptotes of C. [2]

Show that y ≤ 25
12

at all points of C. [4]

Find the coordinates of any stationary points of C. [3]

Sketch C, stating the coordinates of any intersections of C with the coordinate axes and the asymptotes.

[4]

11 Answer only one of the following two alternatives.

EITHER

The curve C has equation y = 2 sec x, for 0 ≤ x ≤ 1
4
0. Show that the arc length s of C is given by

s = Ó 1
4
0

0

�2 sec2 x − 1� dx. �4�

Find the exact value of s. [2]

The surface area generated when C is rotated through 20 radians about the x-axis is denoted by S.

Show that

(i) S = 40 Ó 1
4
0

0

�2 sec3 x − sec x� dx, [3]

(ii)
d

dx
�sec x tan x� = 2 sec3 x − sec x. [3]

Hence find the exact value of S. [2]

OR

The points A, B, C and D have coordinates as follows:

A �2, 1, −2�, B �4, 1, −1�, C �3, −2, −1� and D �3, 6, 2�.

The plane �
1

passes through the points A, B and C. Find a cartesian equation of �
1
. [4]

Find the area of triangle ABC and hence, or otherwise, find the volume of the tetrahedron ABCD.

[6]
[The volume of a tetrahedron is 1

3
× area of base × perpendicular height.]

The plane �
2

passes through the points A, B and D. Find the acute angle between �
1

and �
2
. [4]
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