MARK SCHEME for the May/June 2013 series

9231 FURTHER MATHEMATICS

9231/23

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9231	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9231	23

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a "fortuitous" answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Mark Scheme GCE AS/A LEVEL – May/June 2013

SyllabusPaper923123

			Way/June 2013 5231	1		
Question Number	Mark Sch	neme Details			Part Mark	Total
1	EITHER:	Use $I = Ft$ to find impulse I :	$I = 1500 \times 0.01 [= 15]$	M1 A1		
		Use $I = m(v_1 - v_2)$ to find mass <i>m</i> :	m = I/250 = 0.06	M1 A1		
	OR: Use	$v_2 = v_1 - at$ to find deceleration <i>a</i> :	<i>a</i> = 250/0.01 [=250000]	(M1 A1)		
	Use	F = ma to find mass <i>m</i> :	m = 1500/a = 0.06	(M1 A1)		
	OR: Use	$s = \frac{1}{2} (v_1 + v_2)t$ to find distance s:	$s = \frac{1}{2} \times 310 \times 0.01 [= 1.55]$	(M1 A1)		
	Use .	$Fs = \frac{1}{2} m(v_1^2 - v_2^2)$ to find mass <i>m</i> :	$m = 2 \times 1500 \text{s}/77500 = 0.06$	(M1 A1)	4	4
	S.R Takin	ng $v_1 - v_2 = 280 + 30$ in any method:	$m = I/310 = 0.048[3] \pmod{2/4}$	(M1 A1)		
2	State or in	mply reaction R is zero when contact l	ost	M1		
	Use $F = r$	na radially when contact lost:	$mv^2/a = mg\cos\theta \ [-R]$	M1		
	Use cos θ	$\theta = 5/6$ to find v^2 :	$v^2 = ag \cos \theta = 5ag/6$	A1		
		ervation of energy at θ : by $v^2 = u^2 + 2gh$ lose this A1 only)	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2$ = $mg\{a/8 + a(1 - \cos\theta)\}$	M1 A1		
			= 7 <i>mag</i> /24 (A.E.F.)	A1		
	Combine	to find <i>u</i> :	$u^2 = 5ag/6 - 2 \times 7ag/24$	M1		
			$u = \sqrt{(\frac{1}{4} ag)} or \frac{1}{2} \sqrt{(ag)}$	A1	8	8
3	Use conse	ervation of momentum, e.g.:	$mv_A + 2mv_B = mu$	B1		
	Use restit eqn.):	tution (must be consistent with prev.	$v_A - v_B = -eu$	B1		
	Find spee sign):	ed of <i>B</i> after striking barrier (ignore	$v_B' = \frac{1}{2} v_B$	M1		
	Relate K.	E. before and after collision:	$(\frac{1}{2}mu^2)/9 = \frac{1}{2}mv_A^2 + \frac{1}{2}(2m)v_B'^2$	M1		
	EITHER:	Solve first two eqns for v_A and v_B (A.E.F):	$v_A = \frac{1}{3}(1-2e)u, \ v_B = \frac{1}{3}(1+e)u$	M1 A1		
		Substitute for v_A , v_B' in KE eqn:	$u^{2}/9 = (1 - 2e)^{2}u^{2}/9 + \frac{1}{2}(1 + e)^{2}u^{2}/9$	A1		
		Simplify and solve for <i>e</i> :	$9e^2 - 6e + 1 = 0, e = \frac{1}{3}$	M1 A1		
	OR:	Use $v_A + 2v_B = u$ in KE eqn to give e.g.:	$81v_A^2 - 18uv_A + u^2 = 0$			
			$or 81v_B^2 - 72uv_B + 16u^2 = 0$	(M1 A1)		
		Solve for v_A and v_B :	$v_A = u/9$ and $v_B = 4u/9$	(A1)		
		Find <i>e</i> from restitution eqn:	$e = (4u/9 - u/9)/u = \frac{1}{3}$	(M1 A1)	9	9

		Page 5	Mark Sc		Syllabus]
		GCE AS/A LEVEL – Ma		- May/June 2013	9231		23	
4			motion at general point: loses this A1 only)	$m d^{2}x/dt^{2} = mg(2a - x)/2a - mg\{(2a + x)/2a + x)/2a + x\}$		M1 A1		
		Neglect (x/a)	² and higher powers:	$d^{2}x/dt^{2} = g(1 - x/2a) -g(1 - x/4a) = -g(1 $	gx/4 <i>a</i> 1	M1 A1		
		Find period f	from $T = 2\pi/\omega$:	$T = 2\pi \sqrt{(4a/g)} \text{ or } 4\pi \sqrt{(a/g)}$	/g)	B1	5	
		Find <i>v</i> from <i>v</i>	$w^2 = \omega^2 (A^2 - x^2)$:	$v^2 = (g/4a) \{(a/20)^2 - (a/2)^2 -$	$(40)^2$	M1		
				$v = (1/80)\sqrt{(3ag)}$ A.G.		A1		
		Find t from x	$= a \cos \omega t$ (A.E.F.):	$t = \sqrt{(4a/g) \cos^{-1} \frac{1}{2}} = \frac{2}{3}$	$\pi\sqrt{a/g}$	M1 A1	4	9
5		Find MI of A	BCD about O:	$I_{ABCD} = \frac{1}{3}m\{(2a)^2 + a^2\} =$	$= 5ma^{2}/3$	B1		
		Find MI of E	FGH about O:	$I_{EFGH} = \frac{1}{3} (\frac{1}{4m}) \{a^2 + (\frac{1}{2}) = 5ma^2/48$		M1 A1		
		EITHER: Fin	d MI of final lamina about O:	$I_O = I_{ABCD} - I_{EFGH'} = 25$	$5ma^2/16$	M1 A1		
		Fir	nd MI of final lamina about A:	$I_A = I_O + \frac{3}{4} m \times 5a^2$ = $85ma^2/16$ A.G	1	M1 A1 A1		
		OR: Fin	nd MI of <i>ABCD</i> about <i>A</i> :	$I'_{ABCD} = I_{ABCD} + 5ma^2 = 2$	$20ma^2/3$ (N	41 A1)		
		Fir	nd MI of <i>EFGH</i> about <i>A</i> :	$I'_{EFGH} = I_{EFGH} + \frac{1}{4}m \times 5$ $= 65ma^2/48$	5a ² (N	41 A1)		
		Fir	nd MI of final lamina about A:	$I_A = I_{EFGH} - I'_{EFGH}$ = 85ma ² /16 A.G		(B1)	8	
		State or use <i>u</i>	$u = (\sqrt{20}) a\omega$			B1		
		Use energy wh	then C above A to find ω_{min} :	$\frac{1}{2}I_A \omega_{min}^2 = \frac{3}{4} mg \times (\sqrt{20})$) <i>a</i>	M1 A1		
		Hence find u_i	² .	$u_{min}^{2} = 20 (32/85)(\frac{3}{4}\sqrt{20}) = (192\sqrt{5}/17) ag$		M1 A1	5	13
6	(i)	Sketch 6 rand	domly scattered points (lose B1 h	ere if not 6 points)		B1		
	(ii)	Sketch 6 (or more) points as if on negative gradient line				B1	2	
		Show on (i) line labelled y on x between points and approx. horizontal				B1		
		Show on (i) line labelled x on y between points and approx. vertical				B1	2	
		Show on (ii)	line labelled y on x passing through	igh points		B1		
		State or show	y on (ii) that x on y coincides with	y on x		B1	2	6

		Page 6Mark SchemeSyllabusGCE AS/A LEVEL – May/June 20139231		Pa	oer]		
				lay/June 2013	9231	23]
7		Consider diff	Perences e.g. course 2 – course 1:	1.7 2.6 -1.1 -1.7 2.0) 0.5	M1		
		Calculate san	nple mean:	$\overline{d} = 4/6 = 0.6667$		M1		
			ulation variance: here: 23/9 or 2.556 or 1.599 ²)	$s^2 = (18 - 4^2/6) / 5$ = 46/15 or 3.067 or	or 1.751^2	M1		
		State hypothe	eses (A.E.F.), e.g.:	$H_0: \mu_1 - \mu_2 = 0, H_1: \mu_1$	$-\mu_2 \neq 0$	B1		
		Calculate val	ue of <i>t</i> (to 3 s.f.):	$t = \bar{d}/(s/\sqrt{6}) = 0.932[$	[5]	M1 A1		
			correct tabular <i>t</i> value: are \overline{d} with 1.44)	$t_{5,0.95} = 2.01[5]$		*B1		
		Correct conc	lusion (AEF, $\sqrt[h]{}$ on <i>t</i> , dep *B1):	No difference between	mean times	В1√	8	8
8		Find both sar	nple means:	$\overline{x} = 29.2, \overline{y} = 24.4$		B1		
		Estimate both	n popn. variances (to 4 s.f.)	$s_x^2 = (55500 - 1752^2/6)$	0) / 59			
				and $s_y^2 = (33500 - 122)$	20 ² /50) / 49	M1 A1		
		(allow biased	here: 72.36 and 74.64)	$s_x^2 = 73.59$ and $s_y^2 = 73.59$	76-16	A1		
		EITHER: Est	imate combined variance (3 s.f.):	$s^2 = s_x^2/60 + s_y^2/50$ = 2.750 or 1.658 ²		M1 A1		
		Use	e this s to find conf. interval:	$(\overline{x} - \overline{y}) \pm 1.96 s$		M1 A1		
		Eva	aluate:	4.8 ± 3.25 or $[1.55, 8]$	·05]	A1		
		OR: Est	imate common variance (to 3 s.f.):	$s^2 = (59 s_x^2 + 49 s_y^2) / 10$	08			
		(no	te s_x and s_y not needed explicitly)	or (55500 - 1752 ² /60 + 33500 - 1220 ² /50) / 10				
				$= 74.8 \ or \ 8.65^2 \ or \ 33$	64/45	(M1 A1)		
		Use this <i>s</i> to :	find conf. interval:	$(\bar{x} - \bar{y}) \pm 1.96 \ s \ \sqrt{1/6}$	0 + 1/50)	(M1 A1)		
		Evaluate:		$4.8 \pm 3.24[5]$ or $[1.55]$	5[5], 8·04[5]]	(A1)	9	9
9	(i)	Find <i>n</i> using	gradient:	$-\frac{3}{4} = (192 - 24 \times 34/n)$ 4992/n = 1248, n = 4	a) $/(160 - 24^2/n)$) M1 A1 A1	3	
	(ii)		on line $x = Ay + B$: $4/4 = -\frac{3}{4}(x - \frac{24}{4})$	x - 24/4 = (-12/35) (y) x = -12y/35 + 312/35 or -0.343y + 8.91	- 34/4)	M1 A1	2	
	(iii)	Find coefficie	ent <i>r</i> (ignore sign for M1):	$r = -12/\sqrt{(16 \times 35)}$			-	
	(III)			$r = -\frac{12}{\sqrt{(16 \times 35)}}$ or $-\sqrt{(\frac{3}{4} \times 12/35)}$		M1		
		State regressi RHS):	ion line (B1 for each term on	$= -0.507 \text{ or } -3\sqrt{35/35}$	$or -3/\sqrt{35}$	A1	2	9

		Page 7 Mark Scheme		me s	Syllabus Pape			
		GCE AS/A LEVEL – May/June 2013		9231 2		23		
10	(i)	Find prob. of	f Jill scoring on her 5 th kick:	$(\frac{2}{3})^4 (\frac{3}{4})^4 \frac{1}{3} = 1/48 \text{ A.G}$		M1 A1	2	
	(ii)	Find prob. of	f Kate winning on her <i>n</i> th kick:	$\left(\frac{2}{3}\right)^{n-1}\left(\frac{3}{4}\right)^{n-1}\frac{2}{3}\frac{1}{4}$		M1 A1		
				$= 1/(3 \times 2^n)$ A.G.		A1	3	
	(iii)	Find prob. of	f Jill winning game:	$\frac{1}{3}\frac{3}{4}\left\{1+\left(\frac{2}{3}\frac{3}{4}\right)+\left(\frac{2}{3}\frac{3}{4}\right)^{2}+\left(\frac{2}$	+ }	M1 A1		
				$= \frac{1}{4} \left(1 + \frac{1}{2} + \frac{1}{4} + \dots \right) = \frac{1}{4}$	1/2	A1	3	
	(iv)	Find prob that	at game is a draw	$\frac{1}{3}\frac{1}{4}\left\{1+\left(\frac{2}{3}\frac{3}{4}\right)+\left(\frac{2}{3}\frac{3}{4}\right)^{2}+\right\}$	+ }	M1 A1		
				$= \frac{1}{3} \frac{1}{4} \left(1 + \frac{1}{2} + \frac{1}{4} + \dots \right)$				
				or $1 - P(Jill \text{ or Kate wins})$)			
				$= 1 - \{\frac{1}{2} + \frac{1}{3}(\frac{1}{2} + \frac{1}{4} + \dots$)} (1	M1 A1)		
				= 1/6		A1	3	11
11	(a)	Resolve hori	zontally and vertically:	$F_A = R_B$		B1		
		Relate limitin	ng frictions and reactions at A and	$F_A = 2\mu R_A$ and $F_B = \mu R$	R	B1		
		EITHER:	Resolve vertically :	$F_B + R_A = W$	D	B1		
			Combine eqns to find R_A :	$R_A = W/(1+2\mu^2)$		M1 A1		
			Take moments about <i>B</i>	$2R_A\cos\theta - 2F_A\sin\theta = N$	$V\cos\theta$	M1 A1		
			Rearrange and use $F_A = 2\mu R_A$	$R_A - 2\mu R_A \tan \theta = \frac{1}{2}W$				
				$R_A = \frac{1}{2}W/(1-2\mu\tan\theta)$		A1		
			Combine to find tan θ :	$\tan \theta = (1 - 2 \mu^2)/4\mu$ A.G.	ì	M1 A1		
		OR:	Resolve vertically:	$F_B + R_A = W$		(B1)		
			Combine eqns to find R_B :	$R_B = 2\mu W / (1 + 2\mu^2)$	(M1 A1)		
			Take moments about A:	$2R_B\sin\theta + 2F_B\cos\theta = V$	$V\cos\theta$ (M1 A1)		
			Rearrange and use $F_B = \mu R_B$	$R_B \tan \theta + \mu R_B = \frac{1}{2} W$				
				$R_B = \frac{1}{2}W/(\tan\theta + \mu)$		(A1)		
			Combine to find tan θ :	$\tan \theta = (1 - 2 \mu^2)/4\mu$ A.	G. (M1 A1)		
		OR:	Take moments about centre of rod:	$(F_A + R_B)\sin\theta = (R_A - F_B)$,	A1 A1)		
			Use first 3 eqns to eliminate 3 forces, e.g.:	$\tan \theta = (R_B/2\mu - \mu R_B)/(R_B)$		A1 A1)		
				$= (1 - 2 \mu^2)/4\mu$ A.G.		(A1)	10	

© Cambridge International Examinations 2013

	Page 8	Mark Scher		Syllabus		per	
		GCE AS/A LEVEL – Ma	ay/June 2013	9231	2	3	
	Find positive	e value of μ when $\theta = 45^{\circ}$:	$2\mu^{2} + 4\mu - 1 = 0$ $\mu = \sqrt{(3/2) - 1} \text{ or } 0.2$	25 AEE	M1 A1		
	Find positive	value of μ when $\theta = 0^\circ$:	$\mu = \sqrt{(3/2)} = 1.07.02$ $\mu = 1/\sqrt{2} \text{ or } 0.707$.E.F B1		
	State set of p	ossible values of μ (A.E.F.):	$[\sqrt{3/2}) - 1, 1/\sqrt{2}]$ or [0]	·225, 0·707]	A1	4	14
(b)	Tabulate obs	erved values:	Rural Support A Not support 45 – A	Urban 60 – A A – 5	M1 A1		
	Find correspo	onding expected values:	27 18	33 22	M1 A1		
	Calculate val	ue of χ^2 :]	$\chi^2 = (27 - A)^2 / 27 + (A)^2 / 27 + (A)^2$	$(-27)^2/18$			
			$+(A-27)^2/33+(27)^2/33$	$(7-A)^2/22$	M1		
			= (50/297) (A – 27	$)^2$			
			or $0.168[35](A-27)$	$(7)^2$	A1		
	State or use c	correct tabular χ^2 value:	$\chi_{\text{tab}}^2 = \chi_{1, 0.9}^2 = 2.706$	(to 3 s.f.)	B1		
	Use conclusion <i>A</i> :	on of independence to find eqn. for	$(50/297)(A-27)^2 < \chi$	tab ²	M1		
		for A (to 3 s.f.): ed reqd for this A1)	$(A - 27)^2 < 16.07$ $A_{min} = 23$ and $A_{max} =$	- 31	A1 A1	10	
	Relate new v	alue χ_{new}^2 to original χ^2 :	$\chi_{\rm new}^2 = N \times \chi^2$		M1		
	Use conclusion <i>A</i> :	on of independence to find eqn. for	$0.168[35] N (A - 27)^2 <$	$\lesssim \chi_{tab}^2$	M1		
	Find N_{max} with (integer value)	th $A = 29$: reqd for this A1)	$N < 2.706/(4 \times 0.1683)$ $N_{\rm max} = 4$	5) = 4.02	A1 A1	4	14