Syllabus

Cambridge International A \& AS Level Mathematics Syllabus code 9709
For examination in June and November 2012

Contents

Cambridge International A \& AS Level Mathematics Syllabus code 9709

1. Introduction 2
1.1 Why choose Cambridge?
1.2 Why choose Cambridge International A \& AS Level Mathematics?1.3 Cambridge Advanced International Certificate of Education (AICE)1.4 How can I find out more?
2. Assessment at a glance 5
3. Syllabus aims and objectives 8
3.1 Aims3.2 Assessment objectives
4. Curriculum content 9
5. Resource list 27
6. List of formulae and tables of the normal distribution 31
7. Mathematical notation. 36
8. Additional information 41
8.1 Guided learning hours
8.2 Recommended prior learning
8.3 Progression
8.4 Component codes
8.5 Grading and reporting
8.6 Resources

1.1 Why choose Cambridge?

University of Cambridge International Examinations (CIE) is the world's largest provider of international qualifications. Around 1.5 million students from 150 countries enter Cambridge examinations every year. What makes educators around the world choose Cambridge?

Recognition

A Cambridge International A or AS Level is recognised around the world by schools, universities and employers. The qualifications are accepted as proof of academic ability for entry to universities worldwide, though some courses do require specific subjects. Cambridge International A Levels typically take two years to complete and offer a flexible course of study that gives students the freedom to select subjects that are right for them. Cambridge International AS Levels often represent the first half of an A Level course but may also be taken as a freestanding qualification. They are accepted in all UK universities and carry half the weighting of an A Level. University course credit and advanced standing is often available for Cambridge International A/AS Levels in countries such as the USA and Canada. Learn more at www.cie.org.uk/recognition.

Support

CIE provides a world-class support service for teachers and exams officers. We offer a wide range of teacher materials to Centres, plus teacher training (online and face-to-face) and student support materials. Exams officers can trust in reliable, efficient administration of exams entry and excellent, personal support from CIE Customer Services. Learn more at www.cie.org.uk/teachers.

Excellence in education

Cambridge qualifications develop successful students. They not only build understanding and knowledge required for progression, but also learning and thinking skills that help students become independent learners and equip them for life.

Not-for-profit, part of the University of Cambridge

CIE is part of Cambridge Assessment, a not-for profit-organisation and part of the University of Cambridge. The needs of teachers and learners are at the core of what we do. CIE invests constantly in improving its qualifications and services. We draw upon education research in developing our qualifications.

1.2 Why choose Cambridge International A \& AS Level Mathematics?

Cambridge International A \& AS Level Mathematics is accepted by universities and employers as proof of mathematical knowledge and understanding. Successful candidates gain lifelong skills, including:

- a deeper understanding of mathematical principles;
- the further development of mathematical skills including the use of applications of mathematics in the context of everyday situations and in other subjects that they may be studying;
- the ability to analyse problems logically, recognising when and how a situation may be represented mathematically;
- the use of mathematics as a means of communication;
- a solid foundation for further study.

The syllabus allows Centres flexibility to choose from three different routes to AS Level Mathematics - Pure Mathematics only or Pure Mathematics and Mechanics or Pure Mathematics and Probability and Statistics. Centres can choose from three different routes to A Level Mathematics depending on the choice of Mechanics, or Probability and Statistics, or both, in the broad area of 'applications'.

1.3 Cambridge Advanced International Certificate of Education (AICE)

Cambridge AICE is the group award of Cambridge International Advanced Supplementary Level and Advanced Level (AS Level and A Level).

Cambridge AICE involves the selection of subjects from three curriculum areas - Mathematics and Science; Languages; Arts and Humanities.

An A Level counts as a double-credit qualification and an AS Level as a single-credit qualification within the Cambridge AICE award framework. Half-credits are also available in English Language and Literature in English and may be combined to obtain the equivalent of a single credit.

To be considered for an AICE Diploma, a candidate must earn the equivalent of six credits by passing a combination of examinations at either double credit or single credit, with at least one course coming from each of the three curriculum areas.

The examinations are administered in May/June and October/November sessions each year. A candidate working towards the Cambridge AICE Diploma may use up to three sessions to take the equivalent of six credits as long as they are taken within a 13-month period.

Mathematics (9709) falls into Group A, Mathematics and Sciences.

Learn more about AICE at http://wwww.cie.org.uk/qualifications/academic/uppersec/aice.

1.4 How can I find out more?

If you are already a Cambridge Centre

You can make entries for this qualification through your usual channels, e.g. CIE Direct. If you have any queries, please contact us at international@cie.org.uk.

If you are not a Cambridge Centre

You can find out how your organisation can become a Cambridge Centre. Email us at international@cie.org.uk. Learn more about the benefits of becoming a Cambridge Centre at www.cie.org.uk.

2. Assessment at a glance

Cambridge International A \& AS Level Mathematics Syllabus code 9709

The 7 units in the scheme cover the following subject areas:

- Pure Mathematics (units P1, P2 and P3);
- Mechanics (units M1 and M2);
- Probability and Statistics (units S1 and S2).

Centres and candidates may:

- take all four Advanced (A) Level components in the same examination session for the full A Level.
- follow a staged assessment route to the A Level by taking two Advanced Subsidiary (AS) papers (P1 \& M1 or P1 \& S1) in an earlier examination session;
- take the Advanced Subsidiary (AS) qualification only.

AS Level candidates take:

Paper 1: Pure Mathematics 1 (P1)

13/4 hours

About 10 shorter and longer questions
75 marks weighted at 60% of total
plus one of the following papers:

Paper 2: Pure Mathematics $2 \text { (P2) }$	Paper 4: Mechanics 1 (M1)	Paper 6: Probability and Statistics (S1)
$11 / 4$ hours About 7 shorter and longer questions 50 marks weighted at 40\% of total	11/4 hours About 7 shorter and longer questions 50 marks weighted at 40% of total	$11 / 4$ hours About 7 shorter and longer questions 50 marks weighted at 40% of total

2. Assessment at a glance

A Level candidates take:

Paper 1: Pure Mathematics 1 (P1)	Paper 3 Pure Mathematics $\mathbf{3}$ (P3)
$\mathbf{1 3}$ /4 hours	$\mathbf{1 3 / 4}$ hours
About 10 shorter and longer questions	About 10 shorter and longer questions
$\mathbf{7 5}$ marks weighted at 30% of total	75 marks weighted at 30% of total

plus one of the following combinations of two papers:

Paper 4: Mechanics 1 (M1)	Paper 6: Probability and Statistics 1 (S1)
$11 / 4$ hours	$11 / 4$ hours
About 7 shorter and longer questions	About 7 shorter and longer questions
50 marks weighted at 20\% of total	50 marks weighted at 20\% of total

or

Paper 4: Mechanics $\mathbf{1}$ (M1)	Paper 5: Mechanics $\mathbf{2}$ (M2)
$\mathbf{1} \frac{1}{4}$ hours	$\mathbf{1} 1 / 4$ hours About 7 shorter and longer questions 50 marks weighted at 20% of total
About 70 marks weighted at 20% of total	

or

Paper 6: Probability and Statistics 1 (S1)	Paper 7: Probability and Statistics 2 (S2)
$\mathbf{1 1 1 / 4}$ hours	$\mathbf{1 1 / 4}$ hours
About $\mathbf{7}$ shorter and longer questions	About $\mathbf{7}$ shorter and longer questions
50 marks weighted at 20\% of total	50 marks weighted at 20% of total

Question papers

There is no choice of questions in any of the question papers and questions will be arranged approximately in order of increasing mark allocations.

It is expected that candidates will have a calculator with standard 'scientific' functions available for use for all papers in the examination. Computers, and calculators capable of algebraic manipulation, are not permitted.

A list of formulae and tables of the normal distribution (MF9) is supplied for the use of candidates in the examination. Details of the items in this list are given for reference in Section 6.

Relationships between units

Units P2, M2, S2 are sequential to units P1, M1, S1 respectively, and the later unit in each subject area may not be used for certification unless the corresponding earlier unit is being (or has already been) used.

Unit P3 is also sequential to unit P1, and may not be used for certification unless P1 is being (or has already been) used. The subject content of unit P2 is a subset of the subject content of unit P3; otherwise, the subject content for different units does not overlap, although later units in each subject area assume knowledge of the earlier units.

Availability

This syllabus is examined in the May/June examination session and the October/November examination session.

This syllabus is available to private candidates.

Centres in the UK that receive government funding are advised to consult the CIE website www.cie.org.uk for the latest information before beginning to teach this syllabus.

Combining this with other syllabuses

Candidates can combine this syllabus in an examination session with any other CIE syllabus, except:

- syllabuses with the same title at the same level

3.1 Aims

The aims of the syllabus are the same for all students. These are set out below and describe the educational purposes of any course based on the Mathematics units for the AS and A Level examinations. The aims are not listed in order of priority.

The aims are to enable candidates to:

- develop their mathematical knowledge and skills in a way which encourages confidence and provides satisfaction and enjoyment;
- develop an understanding of mathematical principles and an appreciation of mathematics as a logical and coherent subject;
- acquire a range of mathematical skills, particularly those which will enable them to use applications of mathematics in the context of everyday situations and of other subjects they may be studying;
- develop the ability to analyse problems logically, recognise when and how a situation may be represented mathematically, identify and interpret relevant factors and, where necessary, select an appropriate mathematical method to solve the problem;
- use mathematics as a means of communication with emphasis on the use of clear expression;
- acquire the mathematical background necessary for further study in this or related subjects.

3.2 Assessment objectives

The abilities assessed in the examinations cover a single area: technique with application.
The examination will test the ability of candidates to:

- understand relevant mathematical concepts, terminology and notation;
- recall accurately and use successfully appropriate manipulative techniques;
- recognise the appropriate mathematical procedure for a given situation;
- apply combinations of mathematical skills and techniques in solving problems;
- present mathematical work, and communicate conclusions, in a clear and logical way.

4. Curriculum content

The mathematical content for each unit in the scheme is detailed below. The order in which topics are listed is not intended to imply anything about the order in which they might be taught.

As well as demonstrating skill in the appropriate techniques, candidates will be expected to apply their knowledge in the solution of problems. Individual questions set may involve ideas and methods from more than one section of the relevant content list.

For all units, knowledge of the content of O Level//IGCSE Mathematics is assumed. Candidates will be expected to be familiar with scientific notation for the expression of compound units, e.g. $5 \mathrm{~m} \mathrm{~s}^{-1}$ for 5 metres per second.

	Candidates should be able to:
1. Quadratics	- carry out the process of completing the square for a quadratic polynomial $a x^{2}+b x+c$, and use this form, e.g. to locate the vertex of the graph of $y=a x^{2}+b x+c$ or to sketch the graph; - find the discriminant of a quadratic polynomial $a x^{2}+b x+c$ and use the discriminant, e.g. to determine the number of real roots of the equation $a x^{2}+b x+c=0$; - solve quadratic equations, and linear and quadratic inequalities, in one unknown; - solve by substitution a pair of simultaneous equations of which one is linear and one is quadratic; - recognise and solve equations in x which are quadratic in some function of x, e.g. $x^{4}-5 x^{2}+4=0$.
2. Functions	- understand the terms function, domain, range, one-one function, inverse function and composition of functions; - identify the range of a given function in simple cases, and find the composition of two given functions; - determine whether or not a given function is one-one, and find the inverse of a one-one function in simple cases; - illustrate in graphical terms the relation between a one-one function and its inverse.

4. Curriculum content

3. Coordinate geometry	- find the length, gradient and mid-point of a line segment, given the coordinates of the end-points; - find the equation of a straight line given sufficient information (e.g. the coordinates of two points on it, or one point on it and its gradient); - understand and use the relationships between the gradients of parallel and perpendicular lines; - interpret and use linear equations, particularly the forms $y=m x+c$ and $y-y_{1}=m\left(x-x_{1}\right.$); - understand the relationship between a graph and its associated algebraic equation, and use the relationship between points of intersection of graphs and solutions of equations (including, in simple cases, the correspondence between a line being tangent to a curve and a repeated root of an equation).
4. Circular measure	- understand the definition of a radian, and use the relationship between radians and degrees;
- use the formulae $s=r \theta$ and $A=\frac{1}{2} r^{2} \theta$ in solving problems concerning	
the arc length and sector area of a circle.	

4. Curriculum content

6. Vectors	- use standard notations for vectors, i.e. $\left(\begin{array}{l}x \\ y \\ y\end{array}\right), x \mathbf{i}+\mathbf{j}, \mathbf{j},\left(\begin{array}{l}x \\ y \\ z\end{array}\right), x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, - carry out addition and subtraction of vectors and multiplication of a vector by a scalar, and interpret these operations in geometrical terms; - use unit vectors, displacement vectors and position vectors; - calculate the magnitude of a vector and the scalar product of two vectors; - use the scalar product to determine the angle between two directions and to solve problems concerning perpendicularity of vectors.
7. Series	- use the expansion of $(a+b)^{n}$, where n is a positive integer (knowledge of the greatest term and properties of the coefficients are not required, but the notations $\binom{n}{r}$ and $n!$ should be known); - recognise arithmetic and geometric progressions; - use the formulae for the nth term and for the sum of the first n terms to solve problems involving arithmetic or geometric progressions; - use the condition for the convergence of a geometric progression, and the formula for the sum to infinity of a convergent geometric progression.
8. Differentiation	- understand the idea of the gradient of a curve, and use the notations $f^{\prime}(x), f^{\prime \prime}(x), \frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ (the technique of differentiation from first principles is not required); - use the derivative of x^{n} (for any rational n), together with constant multiples, sums, differences of functions, and of composite functions using the chain rule; - apply differentiation to gradients, tangents and normals, increasing and decreasing functions and rates of change (including connected rates of change); - locate stationary points, and use information about stationary points in sketching graphs (the ability to distinguish between maximum points and minimum points is required, but identification of points of inflexion is not included).

4. Curriculum content

9. Integration

- understand integration as the reverse process of differentiation, and integrate $(a x+b)^{n}$ (for any rational n except -1), together with constant multiples, sums and differences;
- solve problems involving the evaluation of a constant of integration, e.g. to find the equation of the curve through $(1,-2)$ for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+1$;
- evaluate definite integrals (including simple cases of 'improper' integrals, such as $\int_{0}^{1} x^{-\frac{1}{2}} \mathrm{~d} x$ and $\left.\int_{1}^{\infty} x^{-2} \mathrm{~d} x\right)$;
- use definite integration to find
the area of a region bounded by a curve and lines parallel to the axes, or between two curves,
a volume of revolution about one of the axes.

4. Curriculum content

Unit P2: Pure Mathematics 2 (Paper 2)
Knowledge of the content of unit P1 is assumed, and candidates may be required to demonstrate such knowledge in answering questions.

Candidates should be able to:	
1. Algebra	- understand the meaning of $\|x\|$, and use relations such as $\|a\|=\|b\| \Leftrightarrow a^{2}=b^{2}$ and $\|x-a\|<b \Leftrightarrow a-b<x<a+b$ in the course of solving equations and inequalities; - divide a polynomial, of degree not exceeding 4 , by a linear or quadratic polynomial, and identify the quotient and remainder (which may be zero); - use the factor theorem and the remainder theorem, e.g. to find factors, solve polynomial equations or evaluate unknown coefficients.
2. Logarithmic and exponential functions	- understand the relationship between logarithms and indices, and use the laws of logarithms (excluding change of base); - understand the definition and properties of e^{x} and $\ln x$, including their relationship as inverse functions and their graphs;
- use logarithms to solve equations of the form $a^{x}=b$, and similar	
inequalities;	
- use logarithms to transform a given relationship to linear form, and	
hence determine unknown constants by considering the gradient and/	
or intercept.	

4. Curriculum content

4. Differentiation	- use the derivatives of $\mathrm{e}^{x}, \ln x, \sin x, \cos x, \tan x, \operatorname{together}$ with constant multiples, sums, differences and composites; - differentiate products and quotients; - find and use the first derivative of a function which is defined parametrically or implicitly.
5. Integration	- extend the idea of 'reverse differentiation' to include the integration of $e^{a x+b}, \frac{1}{a x+b}, \sin (a x+b), \cos (a x+b)$ and $\sec ^{2}(a x+b)$ (knowledge of the general method of integration by substitution is not required); - use trigonometrical relationships (such as double-angle formulae) to facilitate the integration of functions such as $\cos ^{2} x$; - use the trapezium rule to estimate the value of a definite integral, and use sketch graphs in simple cases to determine whether the trapezium rule gives an over-estimate or an under-estimate.
6. Numerical solution of equations	- locate approximately a root of an equation, by means of graphical considerations and/or searching for a sign change; - understand the idea of, and use the notation for, a sequence of approximations which converges to a root of an equation; - understand how a given simple iterative formula of the form $x_{n+1}=F\left(x_{n}\right)$ relates to the equation being solved, and use a given iteration, or an iteration based on a given rearrangement of an equation, to determine a root to a prescribed degree of accuracy (knowledge of the condition for convergence is not included, but candidates should understand that an iteration may fail to converge).

4. Curriculum content

Unit P3: Pure Mathematics 3 (Paper 3)
Knowledge of the content of unit P1 is assumed, and candidates may be required to demonstrate such knowledge in answering questions.

	Candidates should be able to:
1. Algebra	- understand the meaning of $\|x\|$, and use relations such as $\|a\|=\|b\| \Leftrightarrow a^{2}=b^{2}$ and $\|x-a\|<b \Leftrightarrow a-b<x<a+b$ in the course of solving equations and inequalities; - divide a polynomial, of degree not exceeding 4, by a linear or quadratic polynomial, and identify the quotient and remainder (which may be zero); - use the factor theorem and the remainder theorem, e.g. to find factors, solve polynomial equations or evaluate unknown coefficients; - recall an appropriate form for expressing rational functions in partial fractions, and carry out the decomposition, in cases where the denominator is no more complicated than $\begin{aligned} & (a x+b)(c x+d)(e x+f), \\ & (a x+b)(c x+d)^{2}, \\ & (a x+b)\left(x^{2}+c^{2}\right), \end{aligned}$ and where the degree of the numerator does not exceed that of the denominator; - use the expansion of $(1+x)^{n}$, where n is a rational number and $\|x\|<1$ (finding a general term is not included, but adapting the standard series to expand e.g. $\left(2-\frac{1}{2} x\right)^{-1}$ is included).
2. Logarithmic and exponential functions	- understand the relationship between logarithms and indices, and use the laws of logarithms (excluding change of base); - understand the definition and properties of e^{x} and $\ln x$, including their relationship as inverse functions and their graphs; - use logarithms to solve equations of the form $a^{x}=b$, and similar inequalities; - use logarithms to transform a given relationship to linear form, and hence determine unknown constants by considering the gradient and/ or intercept.

4. Curriculum content

3. Trigonometry	- understand the relationship of the secant, cosecant and cotangent functions to cosine, sine and tangent, and use properties and graphs of all six trigonometric functions for angles of any magnitude; - use trigonometrical identities for the simplification and exact evaluation of expressions and in the course of solving equations, and select an identity or identities appropriate to the context, showing familiarity in particular with the use of $\sec ^{2} \theta \equiv 1+\tan ^{2} \theta$ and $\operatorname{cosec}^{2} \theta \equiv 1+\cot ^{2} \theta$, the expansions of $\sin (A \pm B), \cos (A \pm B)$ and $\tan (A \pm B)$, the formulae for $\sin 2 A, \cos 2 A$ and $\tan 2 A$, the expressions of $a \sin \theta+b \cos \theta$ in the forms $R \sin (\theta \pm \alpha)$ and $R \cos (\theta \pm \alpha)$.
4. Differentiation	- use the derivatives of $\mathrm{e}^{x}, \ln x, \sin x, \cos x, \tan x, \operatorname{together}$ with constant multiples, sums, differences and composites; - differentiate products and quotients; - find and use the first derivative of a function which is defined parametrically or implicitly.
5. Integration	- extend the idea of 'reverse differentiation' to include the integration of $\mathrm{e}^{a x+b}, \frac{1}{a x+b}, \sin (a x+b), \cos (a x+b) \text { and } \sec ^{2}(a x+b) ;$ - use trigonometrical relationships (such as double-angle formulae) to facilitate the integration of functions such as $\cos ^{2} x$; - integrate rational functions by means of decomposition into partial fractions (restricted to the types of partial fractions specified in paragraph 1 above); - recognise an integrand of the form $\frac{k f^{\prime}(x)}{f(x)}$, and integrate, for example, $\frac{x}{x^{2}+1}$ or $\tan x$; - recognise when an integrand can usefully be regarded as a product, and use integration by parts to integrate, for example, $x \sin 2 x, x^{2} \mathrm{e}^{x}$ or $\ln x$; - use a given substitution to simplify and evaluate either a definite or an indefinite integral; - use the trapezium rule to estimate the value of a definite integral, and use sketch graphs in simple cases to determine whether the trapezium rule gives an over-estimate or an under-estimate.

4. Curriculum content

6. Numerical solution of equations	- locate approximately a root of an equation, by means of graphical considerations and/or searching for a sign change; - understand the idea of, and use the notation for, a sequence of approximations which converges to a root of an equation; - understand how a given simple iterative formula of the form $x_{n+1}=F\left(x_{n}\right)$ relates to the equation being solved, and use a given iteration, or an iteration based on a given rearrangement of an equation, to determine a root to a prescribed degree of accuracy (knowledge of the condition for convergence is not included, but candidates should understand that an iteration may fail to converge).
7. Vectors	- understand the significance of all the symbols used when the equation of a straight line is expressed in the form $\mathbf{r}=\mathbf{a}+t \mathbf{b}$; - determine whether two lines are parallel, intersect or are skew; - find the angle between two lines, and the point of intersection of two lines when it exists; - understand the significance of all the symbols used when the equation of a plane is expressed in either of the forms $a x+b y+c z=d$ or $(\mathbf{r}-\mathbf{a}) . \mathbf{n}=0$; - use equations of lines and planes to solve problems concerning distances, angles and intersections, and in particular find the equation of a line or a plane, given sufficient information, determine whether a line lies in a plane, is parallel to a plane, or intersects a plane, and find the point of intersection of a line and a plane when it exists, find the line of intersection of two non-parallel planes, find the perpendicular distance from a point to a plane, and from a point to a line, find the angle between two planes, and the angle between a line and a plane.

4. Curriculum content

| 8. Differential
 equations | - formulate a simple statement involving a rate of change as a
 differential equation, including the introduction if necessary of a
 constant of proportionality; |
| :--- | :--- | :--- |
| -find by integration a general form of solution for a first order
 differential equation in which the variables are separable; | |
| - use an initial condition to find a particular solution; | |
| - interpret the solution of a differential equation in the context of a | |
| problem being modelled by the equation. | |

4. Curriculum content

Unit M1: Mechanics 1 (Paper 4)

Questions set will be mainly numerical, and will aim to test mechanical principles without involving difficult algebra or trigonometry. However, candidates should be familiar in particular with the following trigonometrical results: $\sin \left(90^{\circ}-\theta\right) \equiv \cos \theta, \cos \left(90^{\circ}-\theta\right) \equiv \sin \theta, \tan \theta \equiv \frac{\sin \theta}{\cos \theta}, \sin ^{2} \theta+\cos ^{2} \theta \equiv 1$. Vector notation will not be used in the question papers, but candidates may use vector methods in their solutions if they wish.

In the following content list, reference to the equilibrium or motion of a 'particle' is not intended to exclude questions that involve extended bodies in a 'realistic' context; however, it is to be understood that any such bodies are to be treated as particles for the purposes of the question.

Unit M1: Mech	er 4)
	Candidates should be able to:
1. Forces and equilibrium	- identify the forces acting in a given situation; - understand the vector nature of force, and find and use components and resultants; - use the principle that, when a particle is in equilibrium, the vector sum of the forces acting is zero, or equivalently, that the sum of the components in any direction is zero; - understand that a contact force between two surfaces can be represented by two components, the normal component and the frictional component; - use the model of a 'smooth' contact, and understand the limitations of this model; - understand the concepts of limiting friction and limiting equilibrium; recall the definition of coefficient of friction, and use the relationship $F=\mu R$ or $F \leq \mu R$, as appropriate; - use Newton's third law.

4. Curriculum content

2. Kinematics of motion in a straight line	-understand the concepts of distance and speed as scalar quantities, and of displacement, velocity and acceleration as vector quantities lin one dimension only); sketch and interpret displacement-time graphs and velocity-time graphs, and in particular appreciate that the area under a velocity-time graph represents displacement, the gradient of a displacement-time graph represents velocity, the gradient of a velocity-time graph represents acceleration; - use differentiation and integration with respect to time to solve simple problems concerning displacement, velocity and acceleration (restricted to calculus within the scope of unit P1);
3. Newton's laws of	
motion	
use appropriate formulae for motion with constant acceleration in a	
straight line.	

4. Curriculum content

Unit M2: Mechanics 2 (Paper 5)
Knowledge of the content of unit M1 is assumed, and candidates may be required to demonstrate such knowledge in answering questions.

| 1. Motion of a |
| :--- | :--- |
| projectile |\quad| Candidates should be able to: |
| :--- |
| - model the motion of a projectile as a particle moving with constant |
| acceleration and understand any limitations of the model; |
| use horizontal and vertical equations of motion to solve problems on |
| the motion of projectiles, including finding the magnitude and direction |
| of the velocity at a given time of position, the range on a horizontal |
| plane and the greatest height reached; |
| - derive and use the cartesian equations of the trajectory of a projectile, |
| including problems in which the initial speed and/or angle of projection |
| may be unknown. |

4. Curriculum content

3. Uniform motion in a circle	- understand the concept of angular speed for a particle moving in a circle, and use the relation $v=r \omega ;$ understand that the acceleration of a particle moving in a circle with constant speed is directed towards the centre of the circle, and use the formulae $r \omega^{2}$ and $\frac{v^{2}}{r} ;$ - solve problems which can be modelled by the motion of a particle moving in a horizontal circle with constant speed.
4. Hooke's law	- use Hooke's law as a model relating the force in an elastic string or spring to the extension or compression, and understand the term modulus of elasticity;
- use the formula for the elastic potential energy stored in a string or	
spring;	

4. Curriculum content

| Unit S1: Probability \& Statistics 1 (Paper 6) | |
| :--- | :--- | :--- |
| | Candidates should be able to: |

4. Curriculum content

4. Discrete random variables	- construct a probability distribution table relating to a given situation involving a discrete random variable variable X, and calculate $E(X)$ and $\operatorname{Var}(X)$; - use formulae for probabilities for the binomial distribution, and recognise practical situations where the binomial distribution is a suitable model (the notation $\mathrm{B}(n, p)$ is included); - use formulae for the expectation and variance of the binomial distribution.
5. The normal distribution	- understand the use of a normal distribution to model a continuous random variable, and use normal distribution tables; - solve problems concerning a variable X, where $X \sim N\left(\mu, \sigma^{2}\right)$, including finding the value of $\mathrm{P}\left(X>x_{1}\right)$, or a related probability, given the values of x_{1}, μ, σ, finding a relationship between x_{1}, μ and σ given the value of $\mathrm{P}\left(X>x_{1}\right)$ or a related probability; - recall conditions under which the normal distribution can be used as an approximation to the binomial distribution (n large enough to ensure that $n p>5$ and $n q>5$), and use this approximation, with a continuity correction, in solving problems.

4. Curriculum content

Unit S2: Probability \& Statistics 2 (Paper 7)
Knowledge of the content of unit S1 is assumed, and candidates may be required to demonstrate such knowledge in answering questions.

	Candidates should be able to:
1. The Poisson distribution	- calculate probabilities for the distribution $\operatorname{Po}(\mu)$; - use the fact that if $X \sim \operatorname{Po}(\mu)$ then the mean and variance of X are each equal to μ; - understand the relevance of the Poisson distribution to the distribution of random events, and use the Poisson distribution as a model; - use the Poisson distribution as an approximation to the binomial distribution where appropriate ($n>50$ and $n p<5$, approximately); - use the normal distribution, with continuity correction, as an approximation to the Poisson distribution where appropriate ($\mu>15$, approximately).
2. Linear combinations of random variables	- use, in the course of solving problems, the results that $\begin{aligned} & E(a X+b)=a E(X)+b \text { and } \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X), \\ & E(a X+b Y)=a E(X)+b E(Y), \\ & \operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y) \text { for independent } X \text { and } Y, \end{aligned}$ if X has a normal distribution then so does $a X+b$, if X and Y have independent normal distributions then $a X+b Y$ has a normal distribution, if X and Y have independent Poisson distributions then $X+Y$ has a Poisson distribution.
3. Continuous random variables	- understand the concept of a continuous random variable, and recall and use properties of a probability density function (restricted to functions defined over a single interval); - use a probability density function to solve problems involving probabilities, and to calculate the mean and variance of a distribution (explicit knowledge of the cumulative distribution function is not included, but location of the median, for example, in simple cases by direct consideration of an area may be required).

4. Curriculum content

4. Sampling and estimation

- understand the distinction between a sample and a population, and appreciate the necessity for randomness in choosing samples;
- explain in simple terms why a given sampling method may be unsatisfactory (knowledge of particular sampling methods, such as quota or stratified sampling, is not required, but candidates should have an elementary understanding of the use of random numbers in producing random samples);
- recognise that a sample mean can be regarded as a random variable, and use the facts that $\mathrm{E}(\bar{X})=\mu$ and that $\operatorname{Var} \bar{X}=\frac{\sigma^{2}}{n}$;
- use the fact that \bar{X} has a normal distribution if X has a normal distribution;
- use the Central Limit theorem where appropriate;
- calculate unbiased estimates of the population mean and variance from a sample, using either raw or summarised data (only a simple understanding of the term 'unbiased' is required);
- determine a confidence interval for a population mean in cases where the population is normally distributed with known variance or where a large sample is used;
- determine, from a large sample, an approximate confidence interval for a population proportion.
- understand the nature of a hypothesis test, the difference between one-tail and two-tail tests, and the terms null hypothesis, alternative hypothesis, significance level, rejection region (or critical region), acceptance region and test statistic;
- formulate hypotheses and carry out a hypothesis test in the context of a single observation from a population which has a binomial or Poisson distribution, using either direct evaluation of probabilities or a normal approximation, as appropriate;
- formulate hypotheses and carry out a hypothesis test concerning the population mean in cases where the population is normally distributed with known variance or where a large sample is used;
- understand the terms Type I error and Type II error in relation to hypothesis tests;
- calculate the probabilities of making Type I and Type II errors in specific situations involving tests based on a normal distribution or direct evaluation of binomial or Poisson probabilities.

5. Resource list

These titles represent some of the texts available in the UK at the time of printing this booklet. Teachers are encouraged to choose texts for class use which they feel will be of interest to their students. The inclusion of a text does not imply that it is either recommended or approved by CIE. Wherever possible, the International Standard Book Number (ISBN) is given.

Endorsed Textbooks

The following textbooks are endorsed by CIE for use with the syllabuses in this booklet - please contact Cambridge University Press for further information.

Author	Title	Publisher	ISBN
Neill \& Quadling	Pure Mathematics 1	Cambridge University Press	0521530113
Neill \& Quadling	Pure Mathematics 2 \& 3	Cambridge University Press	0521530121
Quadling	Mechanics 1	Cambridge University Press	0521530156
Quadling	Mechanics 2	Cambridge University Press	0521530164
Dobbs \& Miller	Statistics 1	Cambridge University Press	$052153013 \times$
Dobbs \& Miller	Statistics 2	Cambridge University Press	0521530148

Suggested Books

Pure Mathematics

Author	Title	Publisher	ISBN
Backhouse, Houldsworth \& Horrill	Pure Mathematics 1	Longman, 1985	0582353866
Backhouse, Houldsworth \& Horrill	Pure Mathematics 2	Longman, 1985	0582353874
Backhouse, Houldsworth, Horrill \&Wood	Essential Pure Mathematics	Longman, 1991	0582066581
Bostock \& Chandler	Core Maths for Advanced Level	Nelson Thornes, 2000	0748755098
Butcher \& Megeny	Access to Advanced Level Maths (short introductory course)	Nelson Thornes, 1997	0748729992
 Crawshaw	Pure Mathematics 1	Longman, 2001	0582405505

5. Resource list

 Crawshaw	Pure Mathematics 2	Longman, 2001	0582405491
Hunt	Graded Exercises in Pure Mathematics (Practice questions)	Cambridge University Press, 2001	0521637538
Martin, Brown, Rigby \& Riley	Complete Advanced Level Mathematics: Pure Mathematics: Core Text	Nelson Thornes, 2000	0748735585
Morley	Practice for Advanced Mathematics - Pure Mathematics (Practice questions)	Hodder \& Stoughton Educational, 1999	Oxford University Press, 1987
Sadler \&Thorning	Understanding Pure Mathematics	0199142432	
Smedley \& Wiseman	Introducing Pure Mathematics	Oxford University Press, 2001	0199148031
SMP	Mathematics for AS and A Level - Pure Mathematics	Cambridge University Press, 1997	0521566177
Solomon	Advanced Level Mathematics: Pure Mathematics	$071955344 \times$	

Integrated Courses

Author	Title	Publisher	ISBN
Berry, Fentern, Francis \& Graham	Discovering Advanced Mathematics - AS Mathematics	Collins Educational, 2000	000322502 X
Berry, Fentern, Francis \& Graham	Discovering Advanced Mathematics - A2 Mathematics	Collins Educational, 2001	0003225038

5. Resource list

Mechanics

Author	Title	Publisher	ISBN
Adams, Haighton, Trim	Complete Advanced Level Mathematics: Mechanics: Core Text	Nelson Thornes, 2000	0748735593
Bostock \& Chandler	Mechanics for A Level	Nelson Thornes, 1996	0748725962
 Beadsworth	Introducing Mechanics	Oxford University Press, 2000	0199147108
Kitchen \& Wake	Graded Exercises in Mechanics (Practice questions)	Cambridge University Press, 2001	0521646863
Nunn \& Simmons	Practice for Advanced Mathematics (Practice questions)	Hodder \& Stoughton Educational, 1998	0340701668
Sadler \& Thorning	Understanding Mechanics	Oxford University Press, 1996	0199146756
SMP	Mathematics for A and AS Level - Mechanics	Cambridge University Press, 1997	0521566150
Solomon	Advanced Level Mathematics: Mechanics	John Murray, 1995	0719570824
Young	Maths in Perspective 2: Mechanics	Hodder \& Stoughton Educational, 1989	0713178221

Statistics

Author	Title	Publisher	ISBN
Clarke \& Cooke	A Basic Course in Statistics	Hodder \& Stoughton Educational, 1998	0340719958
 Chambers	A Concise Course in Advanced Level Statistics	Nelson Thornes, 2001	074875475 X
 Chambers	A-Level Statistics Study Guide	Nelson Thornes, 1997	0748729976
McGill, McLennan, Migliorini	Complete Advanced Level Mathematics: Statistics: Core Text	Nelson Thornes, 2000	0748735607

Norris	Graded Exercises in Statistics (Practice questions)	Cambridge University Press, 2000	0521653991
Rees	Foundations of Statistics	Chapman \& Hall, 1987	0412285606
Smith	Practice for Advanced Mathematics: Statistics (Practice questions)	Hodder \& Stoughton Educational, 1998	034070165 X
SMP	Mathematics for AS and A Level - Statistics	Cambridge University Press, 1997	0521566169
Solomon	Advanced Level Mathematics: Statistics	John Murray, 1996	0719570883
Upton \& Cook	Introducing Statistics	Oxford University Press, 2001	0199148015
Upton \& Cook	Understanding Statistics	Oxford University Press, 1997	0199143919

Resources are also listed on CIE's public website at www.cie.org.uk. Please visit this site on a regular basis as the Resource lists are updated through the year.

Access to teachers' email discussion groups, suggested schemes of work and regularly updated resource lists may be found on the CIE Teacher Support website at http://teachers.cie.org.uk. This website is available to teachers at registered CIE Centres.

6. List of formulae and tables of the normal distribution

PURE MATHEMATICS

Algebra

For the quadratic equation $a x^{2}+b x+c=0$:

$$
x=\frac{-b \pm \sqrt{ }\left(b^{2}-4 a c\right)}{2 a}
$$

For an arithmetic series:

$$
u_{n}=a+(n-1) d, \quad S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n\{2 a+(n-1) d\}
$$

For a geometric series:

$$
u_{n}=a r^{n-1}, \quad S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad(r \neq 1), \quad S_{\infty}=\frac{a}{1-r} \quad(|r|<1)
$$

Binomial expansion:

$$
\begin{aligned}
(a+b)^{n}= & a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\binom{n}{3} a^{n-3} b^{3}+\cdots+b^{n}, \text { where } n \text { is a positive integer } \\
& \text { and }\binom{n}{r}=\frac{n!}{r!(n-r)!} \\
(1+x)^{n}= & 1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3} \cdots, \text { where } n \text { is rational and }|x|<1
\end{aligned}
$$

Trigonometry

$$
\begin{gathered}
\text { Arc length of circle }=r \theta \quad(\theta \text { in radians }) \\
\text { Area of sector of circle }=\frac{1}{2} r^{2} \theta \quad(\theta \text { in radians }) \\
\tan \theta \equiv \frac{\sin \theta}{\cos \theta} \\
1+\tan ^{2} \theta \equiv \sec ^{2} \theta, \quad \cot ^{2} \theta+1 \equiv \operatorname{cosec}^{2} \theta \\
\cos ^{2} \theta+\sin ^{2} \theta \equiv 1, \quad \begin{array}{c}
\text { an }
\end{array} \\
\sin (A \pm B) \equiv \sin A \cos A \sin B \\
\cos (A \pm B) \equiv \cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B) \equiv \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A \equiv 2 \sin A \cos A \\
\cos 2 A \equiv \cos ^{2} A-\sin ^{2} A \equiv 2 \cos ^{2} A-1 \equiv 1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Principal values:

$$
\begin{gathered}
-\frac{1}{2} \pi \leq \sin ^{-1} x \leq \frac{1}{2} \pi \\
0 \leq \cos ^{-1} x \leq \pi \\
-\frac{1}{2} \pi<\tan ^{-1} x<\frac{1}{2} \pi
\end{gathered}
$$

6. List of formulae and tables of the normal distribution

Differentiation

$\mathrm{f}(x)$	$\mathrm{f}^{\prime}(x)$
x^{n}	$n x^{n-1}$
$\ln x$	$\frac{1}{x}$
e^{x}	e^{x}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec ^{2} x$
$u v$	$u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}$
$\frac{u}{v}$	$v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}$
v^{2}	

If $x=\mathrm{f}(t)$ and $y=\mathrm{g}(t)$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$

Integration

$$
\begin{aligned}
\mathrm{f}(x) & \int \mathrm{f}(x) \mathrm{d} x \\
x^{n} & \frac{x^{n+1}}{n+1}+c \quad(n \neq-1) \\
\frac{1}{x} & \ln |x|+c \\
\mathrm{e}^{x} & \mathrm{e}^{x}+c \\
\sin x & -\cos x+c \\
\cos x & \sin x+c \\
\sec ^{2} x & \tan x+c \\
\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x & \\
\int \frac{\mathrm{f}^{\prime}(x)}{\mathrm{f}(x)} \mathrm{d} x=\ln |\mathrm{f}(x)|+c &
\end{aligned}
$$

Vectors

If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ then

$$
\mathbf{a . b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

Numerical integration

Trapezium rule:

$$
\int_{a}^{b} \mathrm{f}(x) \mathrm{d} x \approx \frac{1}{2} h\left\{y_{0}+2\left(y_{1}+y_{2}+\cdots+y_{n-1}\right)+y_{n}\right\}, \text { where } h=\frac{b-a}{n}
$$

6. List of formulae and tables of the normal distribution

MECHANICS

Uniformly accelerated motion

$$
v=u+a t, \quad s=\frac{1}{2}(u+v) t, \quad s=u t+\frac{1}{2} a t^{2}, \quad v^{2}=u^{2}+2 a s
$$

Motion of a projectile
Equation of trajectory is:

$$
y=x \tan \theta-\frac{g x^{2}}{2 V^{2} \cos ^{2} \theta}
$$

Elastic strings and springs

$$
T=\frac{\lambda x}{l}, \quad E=\frac{\lambda x^{2}}{2 l}
$$

Motion in a circle

For uniform circular motion, the acceleration is directed towards the centre and has magnitude

$$
\omega^{2} r \quad \text { or } \quad \frac{v^{2}}{r}
$$

Centres of mass of uniform bodies

Triangular lamina: $\frac{2}{3}$ along median from vertex
Solid hemisphere or radius $r: \frac{3}{8} r$ from centre
Hemispherical shell of radius $r: \frac{1}{2} r$ from centre
Circular arc of radius r and angle $2 \alpha: \frac{r \sin \alpha}{\alpha}$ from centre
Circular sector of radius r and angle $2 \alpha: \frac{2 r \sin \alpha}{3 \alpha}$ from centre
Solid cone or pyramid of height $h: \frac{3}{4} h$ from vertex

6. List of formulae and tables of the normal distribution

PROBABILITY AND STATISTICS

Summary statistics

For ungrouped data:

$$
\bar{x}=\frac{\Sigma x}{n}, \quad \text { standard deviation }=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}=\sqrt{\frac{\sum x^{2}}{n}-\bar{x}^{2}}
$$

For grouped data:

$$
\bar{x}=\frac{\Sigma x f}{\Sigma f}, \quad \text { standard deviation }=\sqrt{\frac{\Sigma(x-\bar{x})^{2} f}{\Sigma f}}=\sqrt{\frac{\Sigma x^{2} f}{\Sigma f}-\bar{x}^{2}}
$$

Discrete random variables

$$
\begin{gathered}
\mathrm{E}(X)=\Sigma x p \\
\operatorname{Var}(X)=\Sigma x^{2} p-\{\mathrm{E}(X)\}^{2}
\end{gathered}
$$

For the binomial distribution $\mathrm{B}(n, p)$:

$$
p_{r}=\binom{n}{r} p^{r}(1-p)^{n-r}, \quad \quad \mu=n p, \quad \sigma^{2}=n p(1-p)
$$

For the Poisson distribution $\operatorname{Po}(a)$:

$$
p_{r}=\mathrm{e}^{-a} \frac{a^{r}}{r!},
$$

$$
\mu=a, \quad \sigma^{2}=a
$$

Continuous random variables

$$
\begin{gathered}
\mathrm{E}(X)=\int x \mathrm{f}(x) \mathrm{d} x \\
\operatorname{Var}(X)=\int x^{2} \mathrm{f}(x) \mathrm{d} x-\{\mathrm{E}(X)\}^{2}
\end{gathered}
$$

Sampling and testing

Unbiased estimators:

$$
\bar{x}=\frac{\Sigma x}{n},
$$

$$
s^{2}=\frac{1}{n-1}\left(\Sigma x^{2}-\frac{(\Sigma x)^{2}}{n}\right)
$$

Central Limit Theorem:

$$
\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Approximate distribution of sample proportion:

$$
\mathrm{N}\left(p, \frac{p(1-p)}{n}\right)
$$

6. List of formulae and tables of the normal distribution

THE NORMAL DISTRIBUTION FUNCTION

If Z has a normal distribution with mean 0 and variance 1 then, for each value of z, the table gives the value of $\Phi(z)$, where

$$
\Phi(z)=\mathrm{P}(Z \leq z)
$$

For negative values of z use $\Phi(-z)=1-\Phi(z)$.

z	0	1	2	3	4	5	6	7	8	9				$\begin{gathered} 456 \\ \text { ADD } \end{gathered}$	78	
0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	4	8	12	$16 \quad 2024$	283	3236
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	4	8	12	$16 \quad 2024$	28	3236
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	4	8	12	15191923	27	3135
0.3	0.6179	0.6217	0.6255	0.6293	0.63	0.6368	0.6406	0.6443	0.6480	0.6517	4	7	11	$1 \begin{array}{llll}15 & 19 & 22\end{array}$	26	3034
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	4	7	11	$\begin{array}{llll}14 & 18 & 22\end{array}$	$25 \quad 2$	2932
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	3	7	10	$\begin{array}{llll}14 & 17 & 20\end{array}$	24	2731
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	3	7	10	131619	23	2629
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	3	6	9	$12 \begin{array}{lll}12 & 15 & 18\end{array}$	21	2427
0.8	0.7881	0.7910	0.7939	0.7967	0.799	0.802	0.805	0.8078	0.8106	0.8133	3	5	8	$11 \begin{array}{lll}14 & 16\end{array}$	19	225
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	3	5	8	$\begin{array}{llll}10 & 13 & 15\end{array}$	18	$20 \quad 23$
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	2	5	7	$\begin{array}{llll}9 & 12 & 14\end{array}$	16	1921
1.	0.8643	0.8665	0.8686	0.870	0.8	0.87	0.8	0.8790	0.8810	0.8830	2	4	6	$8 \quad 10 \quad 12$	14	1618
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.899	0.9015	2	4	6	$\begin{array}{llll}7 & 9 & 11\end{array}$	13	1517
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.916	0.9177	2	3	5	$\begin{array}{llll}6 & 8 & 10\end{array}$	11	1314
1.4	0.9192	0.9207	0.9222	0.9236	0.925	0.92	0.92	0.9292	0.9306	0.9319	1	3	4	$\begin{array}{llll}6 & 7 & 8\end{array}$	10	$11 \begin{array}{ll}11 & 13\end{array}$
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.939	0.9406	0.941	0.9429	0.9441		2	4	$\begin{array}{lll}5 & 6 & 7\end{array}$	8	$10 \quad 11$
1.6	0.9452	0.9463	0.9474	0.948	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545		2	3	$\begin{array}{llll}4 & 5 & 6\end{array}$	7	8
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633		2	3	$\begin{array}{llll}4 & 4 & 5\end{array}$	6	78
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706		1	2	$3 \begin{array}{lll}3 & 4 & 4\end{array}$	5	$6 \quad 6$
1.9	0.9713	0.9719	0.9726	0.973	0.973	0.9	0.9750	0.975	0.976	0.9767		1	2	$\begin{array}{llll}2 & 3 & 4\end{array}$	4	5
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817		1	,	$2 \begin{array}{lll}2 & 2 & 3\end{array}$	3	$4 \quad 4$
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	0	1	,	$2 \begin{array}{lll}2 & 2 & 2\end{array}$	3	34
2.2	0.9861	0.9864	0.9868	0.987	0.9875	0.9878	0.988	0.988	0.988	0.9890	0	1	1	$1 \begin{array}{lll}1 & 2 & 2\end{array}$	2	3
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	0	1	1	$1 \begin{array}{lll}1 & 1 & 2\end{array}$	2	2
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.993	0.9936	0	0	1	1	1	$2 \quad 2$
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.995	0.9952	0	0	0	1		$1 \begin{array}{ll}1 & 1\end{array}$
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964		0	0	$\begin{array}{lll}0 & 1 & 1\end{array}$	1	$1 \begin{array}{ll}1 & 1\end{array}$
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	0	0	0	0000	1	$1 \begin{array}{ll}1 & 1\end{array}$
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9			0	000	0	$1 \begin{array}{ll}1 & 1\end{array}$
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	0	0	0	0	0	0

Critical values for the normal distribution

If Z has a normal distribution with mean 0 and variance 1 then, for each value of p, the table gives the value of z such that

$$
\mathrm{P}(Z \leq z)=p .
$$

p	0.75	0.90	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
z	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

7. Mathematical notation

Examinations for the syllabus in this booklet may use relevant notation from the following list.

1 Set Notation

ϵ	is an element of
\notin	is not an element of
$\left\{x_{1}, x_{2}, \ldots\right\}$	the set with elements $x_{1}, x_{2} \ldots$
$\{x: \ldots\}$	the set of all x such that ...
$\mathrm{n}(A)$	the number of elements in set A
\varnothing	the empty set
\mathscr{C}	the universal set
A^{\prime}	the complement of the set A
\mathbb{N}	the set of natural numbers, $\{1,2,3, \ldots\}$
\mathbb{Z}	the set of integers, $\{0, \pm 1, \pm 2, \pm 3, \ldots \ldots\}$
\mathbb{Z}^{+}	the set of positive integers, $\{1,2,3, \ldots\}$
\mathbb{Z}_{n}	the set of integers modulo $n,\{0,1,2, \ldots, n-1\}$
Q	the set of rational numbers, $\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{Z}^{+}\right\}$
\mathbb{Q}^{+}	the set of positive rational numbers, $\{x \in \mathbb{Q}: x>0\}$
\mathbb{Q}_{0}^{+}	set of positive rational numbers and zero, $\{x \in \mathbb{Q}: x \geq 0\}$
\mathbb{R}	the set of real numbers
\mathbb{R}^{+}	the set of positive real numbers, $\{x \in \mathbb{R}: x>0\}$
\mathbb{R}_{0}^{+}	the set of positive real numbers and zero, $\{x \in \mathbb{R}: x \geq 0\}$
\mathbb{C}	the set of complex numbers
(x, y)	the ordered pair x, y
$A \times B$	the cartesian product of sets A, and B, i.e. $A \times B=\{(a, b): a \in A, b \in B\}$
\subseteq	is a subset of
\subset	is a proper subset of
\cup	union
\bigcirc	intersection
[a, b]	the closed interval $\{x \in \mathbb{R}: a \leq x \leq b\}$
$[a, b)$	the interval $\{x \in \mathbb{R}: a \leq x<b\}$
$(a, b]$	the interval $\{x \in \mathbb{R}: a<x \leq b\}$
(a, b)	the open interval $\{x \in \mathbb{R}: a<x<b\}$
$y R x$	y is related to x by the relation R
$y \sim x$	y is equivalent to x, in the context of some equivalence relation

7. Mathematical notation

2 Miscellaneous Symbols

$=$	is equal to
\neq	is not equal to
\equiv	is identical to or is congruent to
\approx	is approximately equal to
\cong	is isomorphic to
\propto	is proportional to
$<$	is less than
\leq	is less than or equal to, is not greater than
$>$	is greater than
\geq	is greater than or equal to, is not less than
∞	infinity
$p \wedge q$	p and q
$p \vee q$	p or q (or both)
$\sim p$	not p
$p \Rightarrow q$	p implies q (if p then q)
$p \Leftarrow q$	p is implied by q (if q then $p)$
$p \Leftrightarrow q$	p implies and is implied by $q(p$ is equivalent to q)
\exists	there exists
\forall	for all

3 Operations

```
a+b
a-b
a\timesb,ab,a.b
a\divb, \frac{a}{b},a/b
\sum n}\mp@subsup{i}{=1}{n}\mp@subsup{a}{i}{
\prod}\mp@subsup{\prod}{i=1}{n}\mp@subsup{a}{i}{
\sqrt{}{a}
|a| the modulus of a.
n! n factorial
(\begin{array}{l}{n}\\{r}\end{array})
\(a\) plus \(b\)
\(a+b\)
\(a\) minus \(b\)
\(a-b\)
\(a\) multiplied by \(b\)
\(a \div b, \frac{a}{b}, a / b\)
\(a\) divided by \(b\)
\(\sum_{i=1}^{n} a_{i}\)
\(a_{1}+a_{2}+\ldots+a_{n}\)
\(a_{1} \times a_{2} \times \ldots \times a_{n}\)
the positive square root of \(a\).
the modulus of \(a\).
\(n\) factorial
the binomial coefficient \(\frac{n!}{r!(n-r)!}\) for \(n \in \mathbb{Z}^{+}\)
or \(\frac{n(n-1) \ldots(n-r+1)}{r!}\) for \(n \in \mathbb{Q}\)
```


7. Mathematical notation

4 Functions

$\mathrm{f}(x)$	the value of the function f at x
$\mathrm{f}: A \rightarrow B$	f is a function under which each element of set A has an image in set B
$\mathrm{f}: x \mapsto y$	the function f maps the element x to the element y
f^{-1}	the inverse function of the function f
gf	the composite function of f and g which is defined by $\operatorname{gf}(x)=\mathrm{g}(\mathrm{f}(x))$
$\lim _{x \rightarrow a} \mathrm{f}(x)$	the limit of $\mathrm{f}(x)$ as x tends to a
$\Delta x, \delta x$	an increment of x
$\frac{\mathrm{d} y}{\mathrm{~d} x}$	the derivative of y with respect to x
$\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}$	the nth derivative of y with respect to x
$\begin{aligned} & \mathrm{f}^{\prime}(x), \mathrm{f}^{\prime \prime}(x) \\ & \int y \mathrm{~d} x \end{aligned}$	the first, second, \ldots, nth derivatives of $\mathrm{f}(x)$ with respect to x the indefinite integral of y with respect to x
$\int_{a}^{b} y \mathrm{~d} x$	the definite integral of y with respect to x between the limits $x=a$ and $x=b$
$\frac{\partial V}{\partial x}$	the partial derivative of V with respect to x
$\dot{x}, \ddot{x}, \ldots$	the first, second, ... derivatives of x with respect to t

5 Exponential and Logarithmic Functions

e	base of natural logarithms
$\mathrm{e}^{x}, \exp x$	exponential function of x
$\log _{a} x$	logarithm to the base a of x
$\ln x, \log _{\mathrm{e}} x$	natural logarithm of x
$\lg x, \log _{10} x$	logarithm of x to base 10

6 Circular and Hyperbolic Functions

$\left.\begin{array}{l}\text { sin, cos, } \tan , \\ \text { cosec, } \sec , \cot \end{array}\right\}$	the circular functions
$\left.\begin{array}{l}\sin ^{-1}, \cos ^{-1}, \tan ^{-1}, \\ \operatorname{cosec}^{-1}, \sec ^{-1}, \cot ^{-1}\end{array}\right\}$	the inverse circular functions
$\left.\begin{array}{l}\text { sinh, cosh, tanh, } \\ \text { cosech, sech, coth }\end{array}\right\}$	the hyperbolic functions
$\left.\begin{array}{l}\sinh ^{-1}, \cosh ^{-1}, \tanh ^{-1}, \\ \operatorname{cosech}^{-1}, \operatorname{sech}^{-1}, \operatorname{coth}^{-1}\end{array}\right\}$	the inverse hyperbolic functions

7. Mathematical notation

7 Complex Numbers

i	square root of -1
z	a complex number, $z=x+\mathrm{i} y=r(\cos \theta+\mathrm{i} \sin \theta)$
$\operatorname{Re} z$	the real part of $z, \operatorname{Re} z=x$
$\operatorname{Im} z$	the imaginary part of $z, \operatorname{Im} z=y$
$\|z\|$	the modulus of $z,\|z\|=\sqrt{x^{2}+y^{2}}$
$\arg z$	the argument of $z, \arg z=\theta,-\pi<\theta \leq \pi$
z^{*}	the complex conjugate of $z, x-\mathrm{i} y$

8 Matrices
\mathbf{M}
\mathbf{M}^{-1}
\mathbf{M}^{T}
$\operatorname{det} \mathbf{M}$ or $|\mathbf{M}|$

a matrix \mathbf{M}

the inverse of the matrix \mathbf{M}
the transpose of the matrix \mathbf{M}
the determinant of the square matrix \mathbf{M}

9 Vectors

\mathbf{a} the vector \mathbf{a} the vector represented in magnitude and direction by the directed line segment $A B$	
$\hat{\mathbf{a}}$	a unit vector in the direction of \mathbf{a} unit vectors in the directions of the cartesian coordinate axes
$\mathbf{i}, \mathbf{j}, \mathbf{k}$	the magnitude of \mathbf{a}
$\|a\|, a$	the magnitude of $\overrightarrow{A B}$
$\|\overrightarrow{A B}\|, A B$	the scalar product of \mathbf{a} and \mathbf{b}
$\mathbf{a} . \mathbf{b}$	the vector product of \mathbf{a} and \mathbf{b}

7. Mathematical notation

10 Probability and Statistics

A, B, C, etc. $A \cup B$	events union of the events A and B
$A \cap B$	intersection of the events A and B
$\mathrm{P}(A)$	probability of the event A
A^{\prime}	complement of the event A
$\mathrm{P}(A \mid B)$	probability of the event A conditional on the event B
X, Y, R, etc.	random variables
x, y, r, etc.	values of the random variables X, Y, R etc
x_{1}, x_{2}, \ldots	observations
f_{1}, f_{2}, \ldots	frequencies with which the observations x_{1}, x_{2} occur
$\mathrm{p}(x)$	probability function $\mathrm{P}(X=x)$ of the discrete random variable X
p_{1}, p_{2}, \ldots	probabilities of the values x_{1}, x_{2} of the discrete random variable X
$\mathrm{f}(x), \mathrm{g}(x), \ldots$	the value of the probability density function of a continuous random variable X
$\mathrm{F}(x), \mathrm{G}(x), \ldots$.	the value of the (cumulative) distribution function $\mathrm{P}(X \leq x)$ of a continuous random variable X
$\mathrm{E}(X)$	expectation of the random variable X
$\mathrm{E}(\mathrm{g}(X))$	expectation of $\mathrm{g}(X)$
$\operatorname{Var}(X)$	variance of the random variable X
$\mathrm{G}(t)$	probability generating function for a random variable which takes the values 0 , 1, $2 \ldots$
$\mathrm{B}(n, p)$	binomial distribution with parameters n and p
$\mathrm{Po}(\mu)$	Poisson distribution, mean μ
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	normal distribution with mean μ and variance σ^{2}
μ	population mean
σ^{2}	population variance
$\underline{\sigma}$	population standard deviation
\bar{x}, m	sample mean
$s^{2}, \hat{\sigma}^{2}$	unbiased estimate of population variance from a sample, $s^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}$
ϕ	probability density function of the standardised normal variable with distribution $\mathrm{N}(0,1)$
Φ	corresponding cumulative distribution function
ρ	product moment correlation coefficient for a population
r	product moment correlation coefficient for a sample
$\operatorname{Cov}(X, Y)$	covariance of X and Y

8.1 Guided learning hours

Advanced Level ('A Level') syllabuses are designed on the assumption that candidates have about 360 guided learning hours per subject over the duration of the course. Advanced Subsidiary Level ('AS Level') syllabuses are designed on the assumption that candidates have about 180 guided learning hours per subject over the duration of the course. ('Guided learning hours' include direct teaching and any other supervised or directed study time. They do not include private study by the candidate.)

However, these figures are for guidance only, and the number of hours required may vary according to local curricular practice and the candidates' prior experience of the subject.

8.2 Recommended prior learning

We recommend that candidates who are beginning this course should have previously completed an O Level or IGCSE course in Mathematics or the equivalent.

8.3 Progression

Cambridge International A Level Mathematics provides a suitable foundation for the study of Mathematics or related courses in higher education.

Cambridge International AS Level Mathematics constitutes the first half of the Cambridge International A Level course in Mathematics and therefore provides a suitable foundation for the study of Mathematics at A Level and thence for related courses in higher education.

8.4 Component codes

Because of local variations, in some cases component codes will be different in instructions about making entries for examinations and timetables from those printed in this syllabus, but the component names will be unchanged to make identification straightforward.

8.5 Grading and reporting

A Level results are shown by one of the grades A^{*}, A, B, C, D or E indicating the standard achieved, Grade A* being the highest and Grade E the lowest. 'Ungraded' indicates that the candidate has failed to reach the standard required for a pass at either A Level or AS Level. 'Ungraded' will be reported on the statement of results but not on the certificate.

If a candidate takes an A Level and fails to achieve grade E or higher, an AS Level grade will be awarded if both of the following apply:

- the components taken for the A Level by the candidate in that session included all the components making up an AS Level
- the candidate's performance on these components was sufficient to merit the award of an AS Level grade.

Percentage uniform marks are also provided on each candidate's Statement of Results to supplement their grade for a syllabus. They are determined in this way:

- A candidate who obtains...
... the minimum mark necessary for a Grade A* obtains a percentage uniform mark of 90%.
... the minimum mark necessary for a Grade A obtains a percentage uniform mark of 80%.
... the minimum mark necessary for a Grade B obtains a percentage uniform mark of 70%.
... the minimum mark necessary for a Grade C obtains a percentage uniform mark of 60\%.
... the minimum mark necessary for a Grade D obtains a percentage uniform mark of 50%.
... the minimum mark necessary for a Grade E obtains a percentage uniform mark of 40%.
... no marks receives a percentage uniform mark of 0\%.

Candidates whose mark is none of the above receive a percentage mark in between those stated according to the position of their mark in relation to the grade 'thresholds' (i.e. the minimum mark for obtaining a grade). For example, a candidate whose mark is halfway between the minimum for a Grade C and the minimum for a Grade D (and whose grade is therefore D) receives a percentage uniform mark of 55\%.

The uniform percentage mark is stated at syllabus level only. It is not the same as the 'raw' mark obtained by the candidate, since it depends on the position of the grade thresholds (which may vary from one session to another and from one subject to another) and it has been turned into a percentage.

AS Level results are shown by one of the grades a, b, c, d or e indicating the standard achieved, Grade a being the highest and Grade e the lowest. 'Ungraded' indicates that the candidate has failed to reach the standard required for a pass at AS Level. 'Ungraded' will be reported on the statement of results but not on the certificate.

The content and difficulty of an AS Level examination is equivalent to the first half of a corresponding A Level.

Percentage uniform marks are also provided on each candidate's Statement of Results to supplement their grade for a syllabus. They are determined in this way:

- A candidate who obtains...
... the minimum mark necessary for a Grade a obtains a percentage uniform mark of 80%.
... the minimum mark necessary for a Grade b obtains a percentage uniform mark of 70%.
... the minimum mark necessary for a Grade c obtains a percentage uniform mark of 60%.
... the minimum mark necessary for a Grade d obtains a percentage uniform mark of 50%.
... the minimum mark necessary for a Grade e obtains a percentage uniform mark of 40%.
... no marks receives a percentage uniform mark of 0%.

Candidates whose mark is none of the above receive a percentage mark in between those stated according to the position of their mark in relation to the grade 'thresholds' (i.e. the minimum mark for obtaining a grade). For example, a candidate whose mark is halfway between the minimum for a Grade c and the minimum for a Grade d (and whose grade is therefore d) receives a percentage uniform mark of 55\%.

The uniform percentage mark is stated at syllabus level only. It is not the same as the 'raw' mark obtained by the candidate, since it depends on the position of the grade thresholds (which may vary from one session to another and from one subject to another) and it has been turned into a percentage.

8.6 Resources

Copies of syllabuses, the most recent question papers and Principal Examiners' reports are available on the Syllabus and Support Materials CD-ROM, which is sent to all CIE Centres.

Resources are also listed on CIE's public website at www.cie.org.uk. Please visit this site on a regular basis as the Resource lists are updated through the year.

Access to teachers' email discussion groups, suggested schemes of work and regularly updated resource lists may be found on the CIE Teacher Support website at http://teachers.cie.org.uk. This website is available to teachers at registered CIE Centres.

University of Cambridge International Examinations 1 Hills Road, Cambridge, CB1 2EU, United Kingdom Tel: +44 (0)1223553554 Fax: +44 (0)1223553558 Email: international@cie.org.uk Website: www.cie.org.uk
© University of Cambridge International Examinations 2009

