MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Sc				Syllabus	Paper
		GCE AS/A LEVEL – Oct	9709	61			
1	Y	$Z \bigwedge$	B1		X mean at 30, r or 15 – 45	oughly from 10	to 50
	X		B1		<i>Y</i> same mean as	s X but higher a	nd thinner
	10 20 30	40 50 60 70	B1ft	3	Z same shape a	s Y but mean at	50 ft wrong Y
2	either 55/90 (1 or 95/160 (19/.		B1		oe		
	P(M and 18 - 6) = 0.367 (11)	50) = 0.6 × 55/90 / 30)	M1		0.6 mult by 55/ of a fraction	90 seen as num	/ denom
	(= 29/48 or 0.6		M1		Summing 2 two anywhere	o-factor product	s seen
	P(M 18 - 60)	$P(M - 18 - 60) = \frac{P(M - 18 - 60)}{P(18 - 60)}$	A1		Correct unsimp num/denom of	lified answer se a fraction	en as
		= 88/145 (0.607)	A1	5	Correct answer		
3		= 26	M1 A1		Obtaining Σx as Correct answer	nd subtracting 1	8 × 5
	$\frac{\Sigma(x-5)^2}{18} - \left(\frac{2}{1}\right)$	$\left(\frac{6}{8}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2$	M1 M1			t var formula all t var formula all	
	$\Sigma(x-5)^2 = 257$	7	A1	5	Correct answer		
	OR coded mean $\Sigma(x-5) = 1.44$	n = 58/9 - 5 = 1.444 $44 \times 18 = 26$	M1 A1		Subtracting 5 fr Correct answer	rom true mean a	nd mult by 18
		$x^2 - 10\Sigma x + 25 \times 18$ 0 + 450 = 257	M1 A1 A1		Expanding $\Sigma(x - Any 2$ terms co Correct answer		ded
4	(i)	600 700 800 900 1000	B1 B1 B1				
200) 300 400 500	600 700 800 900 1000 House price, 000's dollars	B1	4	Correct end point through box	ints of whiskers	not
	(ii) 1.5 × 170	= 255	M1		Mult their IQ ra	ange by 1.5	
	690 + 170	the houses above $0 \times 1.5 = 945$ and 986 thousands of dollars	A1	2	Correct answer thousands of do	s from correct w	kg need
	(iii) doesn't sh	now all the data items	B1	1	Need to see 'in	dividual items' o	be

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

		1		
(i)		B1		Rounding to ± 1.41 seen
	$\frac{c-14.2}{3.6} = -1.406$	M1		Standardising allow sq rt no cc
	<i>c</i> = 9.14	A1	3	Correct answer
(ii)	$P\left(\frac{15-14.2}{3.6}\right) < z < \left(\frac{16-14.2}{3.6}\right)$	M1		2 attempts at standardising no cc no sq rt
	$= \Phi(0.5) - \Phi(0.222)$ = 0.6015 - 0.5870	M1		Subt two Φs (indep mark)
	= 0.0913 - 0.3879 = 0.1036	A1		Needn't be entirely accurate, rounding to 0.10
	P(at least 2) = 1 - P(0, 1) = 1 - (0.8964) ⁷ - (0.8964) ⁶ (0.1036) ₇ C ₁	M1		Binomial term with $_{7}C_{r}p^{r}(1-p)^{7-r}$ seen $r \neq 0$ any $p < 1$
	= 1 - 0.8413	M1		1 - P(0), 1 - P(1), 1 - P(0, 1) seen their p
	= 0.159	A1	6	Correct answer accept 3sf rounding to 0.16
(i)	$\begin{array}{cccc} M & R & O \\ 3 & 1 & 2 = 7C3 \times 5C1 \times 8C2 = 4900 \end{array}$	M1		Summing more than one 3term option involving combs (can be added)
	3 2 $1 = 7C3 \times 5C2 \times 8C1 = 2800$	M1		Mult 3 combs only (indep)
	2 2 $2 = 7C2 \times 5C2 \times 8C2 = 5880$	A1		1 option correct unsimplified
	Total = 13580	A1	4	Correct answer
(ii)		M1		4! seen mult by something
	2 ordinary in 2! ways	M1		Mult by 3! for racing or 2! for ordinary
	$4! \times 3! \times 2 = 288$	A1	3	Correct answer
(iii)		M1		2! or 4! seen mult
	Rest of bikes in 4!	M1		Mult by 5 (ssssb)
	Bixes and spaces 5 groups in 5 ways $2! \times 4! \times 5 = 240$	A1	3	Correct answer
	(ii) (i) (ii)	(ii) $P\left(\frac{15-14.2}{3.6}\right) < z < \left(\frac{16-14.2}{3.6}\right)$ $= \Phi(0.5) - \Phi(0.222)$ = 0.6915 - 0.5879 = 0.1036 P(at least 2) = 1 - P(0, 1) $= 1 - (0.8964)^7 - (0.8964)^6(0.1036)_7C_1$ = 1 - 0.8413 = 0.159 (i) M R O $3 \ 1 \ 2 = 7C3 \times 5C1 \times 8C2 = 4900$ $3 \ 2 \ 1 = 7C3 \times 5C2 \times 8C1 = 2800$ $2 \ 2 \ 2 = 7C2 \times 5C2 \times 8C2 = 5880$ Total = 13580 (ii) 4 groups in 4! ways $3 \ mountain in 3! ways$ $2 \ ordinary in 2! ways$ $4! \times 3! \times 2 = 288$ (iii) e.g. s O x x x x O s s s Ordinary in 2! Rest of bikes in 4! Bikes and spaces 5 groups in 5 ways	$c = -14.2$ 3.6 -1.406 $c = 9.14$ M1 A1(ii) $P\left(\frac{15-14.2}{3.6}\right) < z < \left(\frac{16-14.2}{3.6}\right)$ M1 A1 $= \Phi(0.5) - \Phi(0.222)$ $= 0.6915 - 0.5879$ $= 0.1036M1A1P(at least 2) = 1 - P(0, 1)= 1 - (0.8964)^7 - (0.8964)^6(0.1036)_7C_1= 1 - 0.8413M1M1= 0.159(i) M R O3 \ 1 \ 2 = 7C3 \times 5C1 \times 8C2 = 4900M13 \ 2 \ 1 = 7C3 \times 5C2 \times 8C1 = 28002 \ 2 \ 2 = 7C2 \times 5C2 \times 8C2 = 5880M1c = 13580(ii) 4 groups in 4! ways3 mountain in 3! ways2 ordinary in 2! waysM1$	$c = 14.2$ -1.406 M1 $c = 9.14$ A1 3 (ii) $P\left(\frac{15-14.2}{3.6}\right) < z < \left(\frac{16-14.2}{3.6}\right)$ M1 $= \Phi(0.5) - \Phi(0.222)$ M1 $= 0.6915 - 0.5879$ A1 $= 0.1036$ M1 $P(at least 2) = 1 - P(0, 1)$ M1 $= 1 - (0.8964)^7 - (0.8964)^6(0.1036)_7C_1$ M1 $= 0.159$ A1 6 (i) M R O M1 3 2 $1 = 7C3 \times 5C1 \times 8C2 = 4900$ M1 3 2 $1 = 7C3 \times 5C2 \times 8C1 = 2800$ M1 2 2 $2 = 7C2 \times 5C2 \times 8C2 = 5880$ M1 3 2 $1 = 7C3 \times 5C2 \times 8C2 = 5880$ M1 3 3 3 M1 M1 $4! \times 3! \times 2 = 288$ A1 3 (iii) $4! x 3! \times 2 = 288$ M1 M1 $4! \times 3! \times 2 = 288$ M1 M1 0 rdinary in 2! Rest of bikes in 4! M1 M1

Page 6				Mark Scheme							Syllabus	Paper	
	GCE AS/A LEVEL – October/Novem									nber 2013	9709	61	
7 (i)				en smal × 1/4 =			s 2		B1 B1	2	Or equivalent		
(ii) P(3) from two dice = $2/16$ seen P(H, 3) = $1/2 \times 2/16 = 2/32$ P(T, 3) = $1/2 \times 1/4 = 1/8$ So P(3) = $6/32 = 3/16$ AG									B1 M1 A1 A1	4	From (1, 2) and (2, 1) Summing P(H, 3) and P(T, 3) One correct Correct answer must see clear reasoning		
(iii) X Prob	1	2 5/32	3	4 7/32	5	6 3/32	7	8	B1 B1 B1	3	One correct pr A second corr A third correc	ect prob	
(iv)	car	$Q \cap R$) n't get	a 7'	or 'if yo		row a t	ail y	ou	M1 A1dep			R) = 0 or implyin	g by words