CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

9709/63 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	63

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	63

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	63

1	$z = -1.036 = \frac{5.6 - 93}{}$	B1		$\pm (1.036 \text{ to } 1.037) \text{ seen}$
	σ	M1		Equation with 5.6 or 13.0, 9.3, σ and a z value,
				no cc
	$\sigma = 3.57$	A1	3	Correct final answer
2	$-3p + 2r + 4 \times 0.4 = 2.3$	B1		Correct unsimplified equation, oe
	$(-3)^2p + 2^2r + 4^2 \times 0.4 - 2.3^2 = 3.01$	B1		Correct unsimplified equation, oe
	p + q + r + 0.4 = 1	B1		Correct equation, oe
	-3p + 2r = 0.7			
	9p + 4r = 1.9			
	so $-9p + 6r = 2.1$ or $-6p + 4r = 1.4$	M1		Olasia an amatica in 1 ambarana
	4r + 6r = 1.9 + 2.1 or $9p + 6p = 1.9 - 1.4$	IVI I		Obtain an equation in 1 unknown
	$r = \frac{2}{5} (0.4), p = \frac{1}{30} (0.0333)$	A1		One correct answer
	$q = 0.6 - 0.4 - 0.0333 = \frac{1}{6} (0.167)$	A1	6	Remaining two answers correct
3	(i) $\frac{74}{170} \left(\frac{37}{85}\right) (0.435)$	B1	1	Correct answer
	170 (85)	D1	•	Correct answer
	38 (19) (0.200)	D.1		0 10 1
	(ii) $\frac{38}{96} \left(\frac{19}{49}\right) (0.396)$	B1		Correct unsimplified numerator or
		B1	2	denominator Correct answer
				Correct answer
	(iii) P(high GDP and high birth rate) = 0	B1*		Correct reason
	So they are exclusive	B1dep*	* 2	Correct answer, CWO
	42 41			
	(iv) $\frac{42}{74} \times \frac{41}{54}$	M1		Multiplying 2 probabilities with different
		D1		numerators and denominators, only
	-1722(287)(0.421)	B1 A1	2	One correct probability seen
	$=\frac{1722}{3996} \left(\frac{287}{666}\right) (0.431)$	AI	3	Correct answer
4	(i) $(3 \times 59 + 8 \times 67 + 15.5 \times 38 + 25.5 \times 67 + 15.5 $	M1		Attempt to calculate the mean using midpoints
	$18 + 40.5 \times 11)/193$			not ends, with frequencies, can be implied
	= 11.4	A1		Correct mean
	2 (22 50 + 92 (7 +)/102	M 1		Using $\sum v^2 f$ with moon ² subtracted necessically
	$\sigma^2 = (3^2 \times 59 + 8^2 \times 67 +)/193 -$	M1		Using $\sum x^2 f$ with mean ² subtracted numerically,
	$(11.43)^2$			can be implied
	$\sigma = 9.78 \text{ or } 9.79$	A1	4	Correct answer, method marks can be implied
<u> </u>	* * * * * * * * * * * * * * * * * * * *	1		, r

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	63

(ii) fd = 11.8, 13.4, 3.8, 1.8, 0.55	M1	Attempt at frequency density or scaling
(h) 1d 11.0, 13.1, 3.0, 1.0, 0.23	1111	True input at frequency density of searing
	A1	Correct heights seen on graph
	D1	
	B1	Bar lines correctly located at 5.5, 10.5, 20.5
		and 30.5, no gaps, their scale which may be non-linear
		non mear
	B1	correct widths of bars, independent of bar lines
	5.1	
0 10 20 30 40 50	B1 5	Both axes uniform, from at least 0 to 14 if fd
% of meat		and 0.5 to 50.5, and labelled (fd or freq per 5% and % meat or % or meat)
		and 70 meat of 70 of meat)
5 (i) $\Phi\left(\frac{84.5-82}{\sqrt{126}}\right)\Phi\left[\frac{83.5-82}{\sqrt{126}}\right]$	M1	Standardising using 83.5 or 84.5, must have
		square root
$= \Phi(0.2227) - \Phi(0.1336)$ = 0.5883 - 0.5533	M1	Subtracting two probabilities, both > 0.5 or
-0.3885 - 0.3333 = 0.0350	A1 3	both < 0.5 Correct answer
(ii) $P(x > 87) = 1 - \Phi\left(\frac{87 - 82}{\sqrt{126}}\right) = 1 - \Phi$	M1	Standardising, no cc, must have square root
(0.445)		
= 1 - 0.6718 = 0.3282	A1	Correct probability
D(0.1) (0.6710) ⁵ G (0.2202)	3.41	A 1: :14 CC C X(1)5-x (0
$P(0, 1) = (0.6718)^{5} + {}_{5}C_{1}(0.3282)$ $(0.6718)^{4}$	M1	Any binomial term of form ${}_{5}C_{x}p^{x}(1-p)^{5-x},x\neq 0$
= 0.471	A1 4	Correct answer
(iii) $P(x < 87) = 0.6718$	M1	Finding P($x < 87$), value > 0.5
P(x < k) = 0.9718	M1	Adding 0.3 to their 0.6718 or equivalent
z = 1.908 or 1.909	A1	Correct z
$1.909 = \pm \frac{k - 82}{\sqrt{126}}$	M1	Equation with k , 82 or 81.5 or 82.5, $\sqrt{126}$,
$1.909 - \pm \frac{1}{\sqrt{126}}$	171 1	and a z-value
		and a 2-varue
k = 103	A1 5	Correct answer rounding to 103
6 (a) twins in: ${}_{6}C_{2}$ twins out: ${}_{5}C_{2} \times {}_{6}C_{2}$	B1	₆ C ₂ alone or ₅ C ₂ multiplied seen or implied
Total = $15 + 150$	M1	Summing two cases
$= 165$ OP all: $C \times C$ one twin: $2 \times C \times C$	A1 3 B1	Correct final answer ${}_{7}C_{2}\times_{6}C_{2}$ alone or ${}_{5}C_{1}$ multiplied seen or implied
OR all: ${}_{7}C_{2} \times {}_{6}C_{2}$ one twin: $2 \times {}_{5}C_{1} \times {}_{6}C_{2}$	M1	$7C_2 \land 6C_2$ arone of ${}_5C_1$ multiplied seen of implied $2 \times {}_5C_1 \times {}_6C_2$ seen, subtracted
Total = $315 - 150$	A1	Correct final answer
= 165		

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	63

,		,		
(b) (i)	ends in 2, 6 or 8: 6!/2! (= 360) ways ends in 4: 6! (= 720) ways Total = 3 × 360 + 720 = 1800 ways	B1 B1 M1 A1	4	Correct option for ending with 2 or 6 or 8.6!/2! seen anywhere, not multiplied Correct option for ending in 4 Summing 3 or 4 even options Correct final answer
	OR ₁ all: 7!/2! (= 2520) ways ends in 1 or 7: 6!/2! (= 360) ways Total = 2520 - 2 × 360 = 1800	B1 B1 M1 A1		7!/2! seen anywhere, not multiplied 6!/2! seen, subtracted Subtract 2 odd options from total options Correct final answer
	OR_2 (4 _A , 4 _B) final digit: 5 ways other digits: 6! ways and ÷ by 2! Total = 5 × 360 = 1800	B1 B1 M1 A1		5 seen, multiplied 6! seen and divide by 2! at some stage Multiplying their two numbers Correct final answer
(ii)	$5\times4\times3\times2$ or ${}_5P_4$ or ${}_5C_4\times4!$ or $5!$ or ${}_5P_5$ or ${}_6P_5\div6$ = 120 ways	M1 A1	2	One of these oe Correct final answer
(c)	$\left(\frac{2}{3}\right)^{7} = \frac{128}{2187} (0.0585)$	M1 M1 A1	3	2/3 seen multiplied 7 probabilities multiplied together Correct final answer