MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

9709/32

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol s^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	32

1	EITHER	State or imply non-modular inequality $(3(x-1))^2 < (2x+1)^2$ or corresponding quadratic equation, or pair of linear equations $3(x-1) = \pm (2x+1)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values $x = \frac{2}{5}$ and $x = 4$ State answer $\frac{2}{5} < x < 4$	B1 M1 A1 A1	
	OR	Obtain critical value $x = \frac{2}{5}$ or $x = 4$ from a graphical method, or by inspection, or		
	by	solving a linear equation or inequality	B1	
		Obtain critical values $x = \frac{1}{5}$ and $x = 4$	B2	
		State answer $\frac{2}{5} < x < 4$ [Do not condone \leq for \leq .]	B1	[4]
2	EITHER	Use laws of indices correctly and solve for 5^x or for 5^{-x} or for 5^{x-1}	M1	
		$\frac{1-1}{15}$		
		Obtain 5^x or for 5^{-x} or for 5^{x-1} in any correct form, e.g. $5^x =$	A1	
		Obtain 5^x or for 5^{-x} or for 5^{x-1} in any correct form, e.g. $5^x =$ Use correct method for solving $5^x = a$, or $5^{-x} = a$, or $5^{x-1} = a$, where $a \ge 0$ Obtain answer $x = 1.14$	A1 M1 A1	
	OR	Use correct method for solving $5^x = a$, or $5^{-x} = a$, or $5^{x-1} = a$, where $a \ge 0$ Obtain answer $x = 1.14$ Use an appropriate iterative formula, e.g. $x_{n+1} = $, correctly, at least on Obtain answer 1.14	M1 A1	
	OR	Use correct method for solving $5^x = a$, or $5^{-x} = a$, or $5^{x-1} = a$, where $a \ge 0$ Obtain answer $x = 1.14$ Use an appropriate iterative formula, e.g. $x_{n+1} = $, correctly, at least on	M1 A1	[4]

Obtain tan $\theta =$, or equivalent (or find cost θ , sin θ or cot θ)	A1	
Obtain answer $\theta = 103$	5.9°, and no others in the given interval	A1	[5]
[Ignore answers outsid	le the given material]		

	Pa	ige 5	Mark Scheme	Syllabus	Paper	r
			GCE AS/A LEVEL – October/November 2012	9709	32	
4	(i)	Obtain cc	prrect unsimplified terms in x and x^3		B1 + B1	
		Equate co	befficients and solve for a		M1	
			1			
		Obtain fi	hal answer $a = \sqrt{2}$, or exact equivalent		A1	[4]
	(ii)	Use corre	ect method and value of a to find the first two terms of the exp	bansion $(1 + ax)^{-1}$	² M1	
		Obtain 1	$-\sqrt{2x}$, or equivalent		A1 🗸	Α.
			$\frac{3}{2}x^2$ rm $\frac{3}{2}x^2$			
		Obtain te	$rm \overline{2}^{x}$		A1 🗸	* [3]
		Loymoon	c coefficients, e.g. <i>a</i> , are not sufficient for the first B marks] s solely on the value of <i>a</i> .]			

	Pa	ge 6	Mark Scheme	Syllabus	Paper	•
			GCE AS/A LEVEL – October/November 2012	9709	32	
5	(i)		ct quotient or chain rule e given answer correctly having shown sufficient working		M1 A1	[2]
	(ii)		d method, e.g. multiply numerator and denominator by sec x Pythagoras to justify the given identity	$+ \tan x$, and a	B1	[1]
	(iii)		e, expand $(\sec x + \tan x)^2$ and use Pythagoras once ven identity		M1 A1	[2]
	(iv)	Use corre	tegral $2 \tan x - x + 2 \sec x$ ct limits correctly in an expression of the form $a \tan x + bx + bx$	$c \sec x$, or	B1	
			t, where <i>abc</i> ≠ 0 e given answer correctly		M1 A1	[3]
6	Obt Stat	ain term ln	and use a relevant method to find A or B		B1 B1 M1	
	Inte [If t	grate and o	btain $-\frac{1}{2} \ln (1-y) + \frac{1}{2} \ln (1+y)$, or equivalent is directly stated as $k_1 \ln \text{ or } k_2 \ln \text{ give M1}$, and then A2 for 1		A1 √	
	Eva and [Th	luate a con $c \ln (1 + y)$	stant, or use limits $x = 2$, $y = 0$ in a solution containing terms), where $abc \neq 0$ is not available if the integral of $1/(1 - y^2)$ is initially taken to		M1	
	Obt	ain solution	h in any correct form, e.g. $\frac{1}{2} \ln = \ln x - \ln 2$ obtain $y =$, or equivalent, free of logarithms		A1 A1	[8]
7	(i)	FITHED	State or imply $\frac{1}{x} + \frac{1}{y} \frac{dy}{dx}$ as derivative of ln xy, or equivalent	ht.	B1	
,	(1)	LIIILA.	State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3 , or equivalent	11	B1	
			Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$ Obtain the given answer		M1 A1	
		OR	Obtain $xy = \exp((1 + y^3))$ and state or imply $y + x \frac{dy}{dx}$ as derived	ative of <i>xy</i>	B1	
			State or imply $3y^2 \frac{dy}{dx} \exp(1+y^3)$ as derivative of $(1+y^3)$ Equate derivatives and solve for $\frac{dy}{dx}$		B1	
			Equate derivatives and solve for $d\mathbf{x}$ Obtain the given answer [The M1 is dependent on at least one of the B marks being of	earned]	M1 A1	[4]
	(ii)	Obtain y = Substitute	nominator to zero and solve for y = 0.693 only found value in the equation and solve for x = 5.47 only		M1* A1 M1(0 A1	lep*) [4]

© Cambridge International Examinations 2012

Page 7	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	32

8	(i)		t product or quotient rule and use chain rule at least once	M1	
			ivative in any correct form	A1	
			ivative to zero and solve an equation with at least two non-zero terms		
		for real <i>x</i>		M1	
			$\frac{1}{}$		
		Obtain ans	swer $x = \sqrt{2}$, or exact equivalent	A1	[4]
		Ctata a mi	$f_{1} = \frac{1}{(1-1)^{2}} \int (1-1)^{2} \int (1$	D1	
	(11)	State a sur	table equation, e.g. $\alpha = \sqrt{(("ln" (("4" + "8" ('2))))})$ to reach "e" '((("2")) = 4 + 8 α^2	B1	
		Rearrange	to reach $\mathbf{c} \mathbf{u} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} r$	B1	
		Obtain $\frac{1}{2}$ =	= "e" [↑] (K – "1" /"2" "(" 】 ¹ "2") √(("1" + "2" (¹ "2")) , or work <i>vice versa</i>	B1	[3]
		** 4 •.			
	(iii)		erative formula correctly at least once	M1	
			al answer 1.86	A1	
			icient iterations to 4 d.p. to justify 1.86 to 2 d.p., or show there is a sign the interval (1.855, 1.865)	A1	[3]
		change in	the interval (1.855, 1.805)	AI	[3]
9	(i)	EITHER	Substitute $x = 1 + \sqrt{2}$ i and attempt the expansions of the x^2 and x^4 terms	M1	
			Use $i^2 = -1$ correctly at least once	B1	
			Complete the verification	A1	
			State second root $1 - \sqrt{2}$ i	B1	
		OR 1	State second root $1 - \sqrt{2}$ i	B1	
			Carry out a complete method for finding a quadratic factor with zeros $1 \pm \sqrt{2}$ i	M1	
			Obtain $x^2 - 2x + 3$, or equivalent	A1	
			Show that the division of $p(x)$ by $x^2 - 2x + 3$ gives zero remainder and		
			complete the verification	A1	
		OR 2	Substitute $x = 1 + \sqrt{2}$ i and use correct method to express x^2 and x^4 in polar form	M1	
		0112	Obtain x^2 and x^4 in any correct polar form (allow decimals here)	B1	
			Complete an exact verification	A1	
			State second root $1 - \sqrt{2}$ i, or its polar equivalent (allow decimals here)	B1	[4]
			State Second root r r r, or his point equivalent (anow decimals here)	DI	[,]
	(ii)	Carry out a	a complete method for finding a quadratic factor with zeros $1 \pm \sqrt{2}$ i	M1*	
	()	Obtain x^2 -	-2x+3, or equivalent	A1	
		Attempt di	ivision of $p(x)$ by $x^2 - 2x + 3$ reaching a partial quotient $x^2 + kx$,		
		or equivale		M1 (d	lep*)
			adratic factor $x^2 - 2x + 2$	A1	
			eros of the second quadratic factor, using $i^2 = -1$	M1 (d	. /
			its -1 + i and $-1 - i$	A1	[6]
			nd M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an	-	
			n B and/or C, or an unknown factor $Ax^2 + Bx + (6/3)$ and an equation in A and/or B]	
			is attempted by the OR 1 method, then an attempt at part (ii) which uses or	nort 1	::)]
		quotes rele	evant working or results obtained in part (i) should be marked using the scheme for	part (ш)]

Page 8		ge 8	Mark Scheme S	Syllabus	Paper
			GCE AS/A LEVEL – October/November 2012	9709	32
10					
10	(i)	EITHER	Use scalar product of relevant vectors, or subtract point equation equations in a,b,c , e.g. $a - 5b - 3c = 0$ and $a - b - 3c = 0$	ns to form tv	M1*
			State two correct equations in a,b,c		A1
			Solve simultaneous equations and find one ratio, e.g. $a : c$, or b	= 0	M1 (dep*
			Obtain $a : b : c = 3 : 0 : 1$, or equivalent	0	A1
			Substitute a relevant point in $3x + z = d$ and evaluate d		M1 (dep*
			Obtain equation $3x + z = 13$, or equivalent		A1
		OR 1	Attempt to calculate vector product of relevant vectors,		
			e.g. $(i - 5j - 3k) \times (i - j - 3k)$		M2*
			Obtain 2 correct components of the product		A1
			Obtain correct product, e.g. $12\mathbf{i} + 4\mathbf{k}$		A1
			Substitute a relevant point in $12x + 4z = d$ and evaluate d		M1 (dep*
			Obtain $3x + z = 13$, or equivalent		A1
		OR 2	Attempt to form 2-parameter equation for the plane with releva	nt vectors	M2*
			State a correct equation e.g. $\mathbf{r} = 3\mathbf{i} - 2\mathbf{j} + 4\mathbf{k} + \lambda(\mathbf{i} - 5\mathbf{j} - 3\mathbf{k}) + \mu$	$u(\mathbf{i} - \mathbf{j} - 3\mathbf{k})$	A1
			State 3 equations in x, y, z, λ and μ		A1
			Eliminate λ and μ		M1 (dep*
			Obtain equation $3x + z = 13$, or equivalent		A1 [6]
	(ii)	EITHER	Find \overline{CP} for a point <i>P</i> on <i>AB</i> with a parameter <i>t</i> , e.g. $2\mathbf{i} + 3\mathbf{j} + 7$	k + t(-i + j +)	-3 k) B1 √*
			<i>Either:</i> Equate scalar product $\overrightarrow{CP}, \overrightarrow{AB}$ to zero and form an equat	ion in <i>t</i>	
			Or 1: Equate derivative for CP^2 (or CP) to zero and form an equ	ution in t	
			Or 2: Use Pythagoras in triangle CPA (or CPB) and form an equ		M1
			Solve and obtain correct value of t, e.g. $t = -2$		A1
			Carry out a complete method for finding the length of <i>CP</i>		M1
			Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1
		OR 1	State \overrightarrow{AC} (or \overrightarrow{BC}) and \overrightarrow{AB} in component form		B1 √ [≜]
		ON I	Using a relevant scalar product find the cosine of <i>CAB</i> (or <i>CBA</i>))	M1
			$\frac{22}{33}$		IVII
			Obtain cost $CAB = -\sqrt{11} \sqrt{62}$, or cos $CBA = \sqrt{11} \sqrt{117}$, or each other cost $CAB = -\sqrt{11} \sqrt{117}$, or each other cost $CBA = \sqrt{11} \sqrt{117}$	uivalent	A1
			Use trig to find the length of the perpendicular	1	M1
			Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1
		0.0.0			
		OR 2	State \overline{AC} (or \overline{BC}) and \overline{AB} in component form		B1 √*
			Using a relevant scalar product find the length of the projection	AC (or BC)	
			on <i>AB</i>		M1
			Obtain answer $2\sqrt{11}$ (or), $3\sqrt{11}$ or equivalent		A1
			Use Pythagoras to find the length of the perpendicular		M1
			Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1
		OR 3	State \overrightarrow{AC} (or \overrightarrow{BC}) and \overrightarrow{AB} in component form		B1 √*
		OK 5			DI¥
			Calculate their vector product, e.g. $(-2\mathbf{i} - 3\mathbf{j} - 7\mathbf{k}) \times (-\mathbf{i} + \mathbf{j} + 3\mathbf{j})$	k)	M1
			Obtain correct product, e.g. $-2\mathbf{i} + 13\mathbf{j} - 5\mathbf{k}$		A1
			Divide modulus of the product by the modulus of \overline{AB}		M1
			Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1
		OR 4	State two of \overrightarrow{AB} , \overrightarrow{BC}) and \overrightarrow{AC} in component form		B1 √
		0117			
			Use cosine formula in triangle <i>ABC</i> to find $\cos A$ or $\cos B$ 44 66		M1
			Obtain $\cos A = -2\sqrt{11}\sqrt{62}$, or $\cos B = 2\sqrt{11}\sqrt{117}$		A1
			· · · ·		

© Cambridge International Examinations 2012

Page 9	Mark Scheme	Syllabus	Paper	r
	GCE AS/A LEVEL – October/November 2012	9709	32	
	Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1	[5]

[The f.t is on \overline{AB}]